No creo que la objeción es sólo el término "estadísticamente significativo", pero al abuso del concepto de significación estadística de la prueba y de la interpretación de los resultados, que son (o no son) estadísticamente significativa.
En particular, mira estos seis declaraciones:
- Los valores de P puede indicar como incompatibles los datos con un determinado modelo estadístico.
- Los valores de P no miden la probabilidad de que el estudiado hipótesis es verdadera, o la probabilidad de que los datos fueron producidos por el azar
la casualidad.
- Las conclusiones científicas y de negocios o de la política de decisiones no deben basarse sólo en si el p-valor pasa de un umbral específico.
- La correcta inferencia requiere de la completa presentación de informes y transparencia.
- Un p-valor o la significación estadística, no mide el tamaño de un efecto o la importancia de un resultado.
- Por sí mismo, un valor de p no proporciona una buena medida de la evidencia con respecto a un modelo o hipótesis.
Así, ellos están recomendando un más exhaustivo de la forma de hacer y de presentación de informes de análisis que simplemente dando un valor de p, o, incluso, un valor de p con un CI. Creo que esta es sabio y no creo que debería ser objeto de controversia.
Ahora, voy a ir a partir de su declaración a mis propios puntos de vista, yo diría que nosotros a veces no mencionar el valor de p en todos. En muchos casos, no proporcionar información útil. Casi siempre, sabemos de antemano que el valor null no es exactamente así y, muy a menudo, sabemos que no es ni siquiera cerca de la verdad.
Qué hacer en su lugar? Recomiendo Robert Abelson la MAGIA criterios: Magnitud, la Articulación, la Generalidad, Interés y Credibilidad. Puedo decir mucho más sobre esto en mi blog: Estadísticas 101: La MAGIA de los criterios.
(Mis puntos de vista, a diferencia de los de la AAA, son controvertidos. Muchas personas no están de acuerdo con ellos).