Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

12 votos

¿Por qué es f(x)f(y)|xy|dxdy negativo?

El Programa De Instalación

Deje f:RR ser una función suave con apoyo en el intervalo de [R,R] y de satisfacciones f=0. Mediante la manipulación de algunas integrales, he encontrado el sorprendente desigualdad f(x)f(y)|xy|dxdy0. Mis preguntas son

  • Es esta desigualdad verdadera? Es mi derivación a continuación correcto?
  • Existe una razón por la que esto es cierto?
  • Hay otras funciones no triviales g(x,y) para los que f(x)f(y)g(x,y)dxdy0? ¿Qué propiedades debería esperar de estas funciones g(x,y)?

La Derivación

Deje H:RR ser la función de Heaviside, por lo H(x)=1 para x>0, e H(x)=0x0. Yo estaba interesado en la convolución Hf(x) definido por Hf(x)=f(y)H(xy)dy=xf(y)dy. Aviso que desde f tiene apoyo en [R,R]f=0, Hf también tiene soporte en [R,R].
Ahora estamos preparados para iniciar la derivación de la desigualdad, a partir de con la simple observación 0|Hf(x)|2dx=RR|Hf(x)|2dx. Primera ampliar la plaza y la convolución, y, a continuación, reorganizar el orden de las integrales: RR|Hf(x)|2dx=RR(RRf(y)H(xy)dy)(RRf(z)H(xz)dz)dx=RRRRf(y)f(z)(RRH(xy)H(xz)dx)dydz El integrando H(xy)H(xz) 1 cuando ambos x>yx>z, e 0 lo contrario. Por lo tanto la integral viene a min. Nos conectamos con esta de nuevo en la integral, y utilizar de nuevo el hecho de que \int f = 0: \begin{align*} \int_{-R}^R\int_{-R}^R f(y)f(z) \min\{R-y,R-z\} \,dydz &= \int_{-R}^R \int_{-R}^R f(y)f(z)(\min\{-y,-z\} - R)\,dydz \\&= \int_{-R}^R\int_{-R}^R f(y)f(z)\min\{-y,-z\}\,dydz. \end{align*} Ahora dividir el dominio según el cual de -y o -z es menor: \begin{align*} \int_{-R}^R\int_{-R}^R f(y)f(z)\min\{-y,-z\}\,dydz &= -\int_{y=-R}^R f(y)\left(y\int_{z=-R}^y f(z)\,dz + \int_{z=y}^R zf(z)\,dz\right)\,dy. \end{align*} Desde \int_{-R}^R f(z)\,dz = 0, \int_{-R}^yf(z)\,dz = -\int_y^R f(z)\,dz, así que podemos combinar las integrales a la conclusión de que \begin{align*} \int |H\ast f(x)|^2\,dx &= \int_{-R}^R f(y) \int_y^R f(z) (y-z)\,dz\,dy\\ &= - \int_{-R}^R f(y) \int_y^R f(z) |y-z|\,dz\,dy \end{align*} Para llegar a la integral anterior, cambiar los nombres de las variables ficticias y luego intercambiar el orden de las integrales: \begin{align*} \int |H\ast f(x)|^2\,dx &= -\int_{-R}^R f(z) \int_z^R f(y) |z-y|\,dy\,dz\\ &= -\int_{-R}^R f(y) \int_{-R}^y f(z) |z-y|\,dy\,dz. \end{align*} En conclusión, la adición de ambas fórmulas, obtenemos 0\leq 2\int |H\ast f(x)|^2\,dx = -\int\int f(y)f(z)|y-z|\,dy\,dz. La derivación es bastante largo, así que hay una buena probabilidad de que he cometido un error.

5voto

Chappers Puntos 20774

Usted no necesita suavidad: de hecho, integrabilidad es probablemente suficiente. Tal vez el "más brillante" prueba de ello es el uso de series de Fourier: vamos a f \in L^2[-R,R], luego \tilde{f}(k) = \frac{1}{2R}\int_{-R}^R e^{i\pi kx/R}f(x) \, dx todos los que existen, y la identidad de Parseval dice que C\sum_{k=-\infty}^{\infty} \overline{\tilde{f}(k)} \tilde{g}(k) = \int_{-R}^R \overline{f(x)}g(x) \, dx, donde C es un poco interesante de la normalización de la constante (lo más probable es 2R).

También, tenemos el teorema de convolución, por lo que tomar g=f \star h donde h(x)=-\lvert x \rvert, nos encontramos con que \tilde{g}(k) = \tilde{f}(k) \tilde{h}(k), y un cálculo de la muestra que \tilde{h}(k) = \begin{cases} -R/2 & k=0 \\ \frac{(1-(-1)^k) R}{k^2 \pi^2} & k \neq 0 \end{cases}, y, en particular, todos estos, sino \tilde{h}(0) son no negativos. También, \tilde{f}(0)=\int f = 0. Por lo tanto, tenemos -\iint f(x) f(y) \lvert x -y \rvert \, dx \, dy = 2R \sum_{k=-\infty}^{\infty} \lvert \tilde{f}(k) \rvert^2 \tilde{h}(k) = 2R\sum_{k \neq 0} \frac{(1-(-1)^k)R}{k^2\pi^2} \lvert \tilde{f}(k) \rvert^2 \geq 0


De manera más general, es evidente que si g(x,y)=h(x-y), se requiere que todos los coeficientes de Fourier de h ser no negativo guardar para k=0. Más allá de eso, es mucho más difícil (y de hecho, estoy escribiendo un artículo que incluye algunas de estas funciones en el momento).

También puede generalizar esto a infinito de intervalos, si usted tiene \int \lvert x\rvert f(x) \, dx < \infty, por un argumento similar utilizando la transformada de Fourier.

3voto

Tom-Tom Puntos 4560

Establecimiento F(x)=\int_{-R}^xf(y)\mathrm dy=H\star f(x)G(x)=\int_{-R}^xyf(y)\mathrm dy, tenemos F'(x)=f(x), G'(x)=xf(x), F(-R)=F(R)=0. Continuar con la integración \begin{split}A&=\iint f(x)f(y)|x-y|\,\mathrm dy\\ &=\int_{-R}^Rf(x)\left[x\int_{-R}^xf(y)\mathrm dy-\int_{-R}^xyf(y)\mathrm dy-x\int_x^Rf(y)\mathrm dy+\int_x^Ryf(y)\mathrm dy\right]\,\mathrm dx\\ &=\int_{-R}^Rf(x)\left(xF(x)-G(x)+xF(x)+G(R)-G(x)\right)\mathrm dx\\ &=\big[F(x)\left(2xF(x)-2G(x)+G(R)\right)\big]_{-R}^R-\int_{-R}^RF(x)\left(2xf(x)+2F(x)-2xf(x)\right)\mathrm dx\\ &=-2\int_{-R}^RF(x)^2\mathrm dx\le0. \end{split}

Hemos use integración por partes y \int_x^Rf(y)\mathrm dy=F(R)-\int_{-R}^xf(y)\mathrm dy=-F(x).

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X