$$f(x) = \begin{cases}0 & \text{if }-\pi<x<0, \\ \sin(x) & \text{if }0<x<\pi. \end{cases}$$
Mi intento:
He optado por expandir esta función con una serie compleja de Fourier.
$$f(x) = \sum_{n=-\infty}^{+\infty} C_{n}e^{inx}$$
$$C_{n} = \frac {1}{2\pi} \int_{0}^{\pi} \frac {e^{ix}-e^{-ix}}{2i} e^{-inx} \,\mathrm dx = \frac {1}{\pi}\left(\frac {1}{1-n^2}\right)$$
porque sólo hasta $n$ términos sobreviven, impar $n$ son 0
$$ C_0 = \frac {1}{2\pi} \int_{0}^{\pi} \sin(x)\, \mathrm dx = \frac {1}{\pi} $$
así que
$$ f(x) = \frac{1}{\pi} + \frac {1}{\pi} \left(\frac {e^{i2x}}{1-2^2} + \frac {e^{i4x}}{1-4^2}+\frac {e^{i6x}}{1-6^2}+\cdots\right) + \frac {1}{\pi} \left(\frac {e^{-i2x}}{1-2^2} + \frac {e^{-i4x}}{1-4^2}+\frac {e^{-i6x}}{1-6^2}+\cdots\right) $$
En términos de seno y coseno,
$$ f(x) = \frac{1}{\pi} + \frac {2}{\pi} \left(\frac {\cos(2x)}{1-2^2} + \frac {\cos(4x)}{1-4^2}+\frac {\cos(6x)}{1-6^2}+\cdots\right) $$
Pero la respuesta en mi libro se da como
$$ f(x) = \frac{1}{\pi} + \frac{1}{2} \sin(x)+ \frac {2}{\pi} \left(\frac {\cos(2x)}{2^2-1} + \frac {\cos(4x)}{4^2-1}+\frac {\cos(6x)}{6^2-1}+\dotsb\right)$$
No entiendo cómo hay un término del seno y el denominador de los cosenos tiene $-1$ .