A mí me parece que su suma es dada por:
$$
\sum_{n= 0}^{N-1} \frac{ \left(a-b \cos{\left(\frac{2 \pi n}{N} \right)} \right)^2}{a^2 + b^2 -2ab\cos{\frac{2\pi n}{N}}}
=
\frac{N}{2} \left(1+\frac{a^{N-2} (a - b) (a + b)}{a^N - b^N}\right)
$$
This was obtained by Mathematica for some individual fixed $N$ at a time.
I'm not sure if it can show it holds for all $N$.
I'm not an expert in Mathematica. Maybe someone can utilize it better and verify this for all $N$.
It can prove this is true for $N=2,3,4,5,6,8,12,\dots$ for example, but I'm not sure why it can't simplify some other $N$ cases like $N=7$. The others can be tested numerically:
You can verify absolute differences between LHS and RHS using:
ClearAll[mySum, m, a, b, inputSum];
inputSum [m_, a_: a, b_: b] := Sum[(a - b Cos[(2 Pi n) / m])^2/(a^2 + b^2 - 2 a b Cos[(2 Pi n)/m]), {n, 0, m - 1}];
mySum[m_, a_: a, b_: b] := 1/2 (1 + (a^(-2 + m) (a - b) (a + b))/(a^m - b^m)) m;
a = 20;
b = 10;
Do[Print[m, " ", DecimalForm[Abs[N[mySum[m, a, b] - inputSum[m, a, b]]], 100]], {m, 2, 100}]
By setting a,b
to some fixed values. (Here I used m
for $$ N.) También tenga en cuenta que algunos de los resultados serán representados como 0.00000000....456
por ejemplo, debido a la precisión de ajuste de N[]
función.