9 votos

¿Se conoce el resultado de$3\sum\limits_{n=1}^\infty\frac{H_nH_n^{(2)}}{n^6}+\sum\limits_{n=1}^\infty\frac{H_nH_n^{(3)}}{n^5}$ en la literatura?

Pude obtener el siguiente resultado

$$3\sum\limits_{n=1}^\infty\frac{H_nH_n^{(2)}}{n^6}+\sum\limits_{n=1}^\infty\frac{H_nH_n^{(3)}}{n^5}=11\zeta(3)\zeta(6)+\frac52\zeta(4)\zeta(5)-\frac{13}{6}\zeta^3(3)-2\zeta(2)\zeta(7)-5\zeta(9)$ $ donde $H_n^{(p)}=1+\frac1{2^p}+\cdots+\frac1{n^p}$ es el $n$ número armónico general de orden $p$ .

basado en una buena identidad y algunas sumas manejables de Euler. ¿Se conoce este resultado en la literatura? ¿Podemos evaluar los términos por separado?

5voto

Ali Shather Puntos 836

Por el producto de Cauchy tenemos,

$$\operatorname{Li}_3^2(x)=\sum_{n=1}^\infty\left(\frac{12H_n}{n^5}+\frac{H_n^{(2)}}{n^4}+\frac{2H_n^{(3)}}{n^3}-\frac{20}{n^6}\right)x^n\tag{1}$$

Divide ambos lados de la $(1)$ por $x$ , a continuación, integrar de $x=0$ a $1$ conseguir

\begin{align} S&=\sum_{n=1}^\infty\left(\frac{12H_n}{n^6}+\frac{6H_n^{(2)}}{n^5}+\frac{2H_n^{(3)}}{n^4}-\frac{20}{n^7}\right)=\int_0^1\frac{\operatorname{Li}_3^2(x)}{x}\ dx\\ &=\sum_{n=1}^\infty\frac{1}{n^3}\int_0^1x^{n-1}\operatorname{Li}_3(x)\ dx\quad \text{apply integration by parts}\\ &=\sum_{n=1}^\infty\frac{1}{n^3}\left(\frac{\zeta(3)}{n}-\frac{\zeta(2)}{n^2}+\frac{H_n}{n^3}\right)\\ &\boxed{S=\zeta(3)\zeta(4)-\zeta(2)\zeta(5)+\sum_{n=1}^\infty\frac{H_n}{n^6}} \end{align}

Ahora multiplique ambos lados de $(1)$ por $\large\frac{\operatorname{Li}_2(x)}{x}$ , a continuación, integrar de $x=0$ a $1$ conseguir

\begin{align} I&=\int_0^1\frac{\operatorname{Li}_3^2(x)\operatorname{Li}_2(x)}{x}\ dx=\frac13\operatorname{Li}_3^3(1)=\frac13\zeta^3(3)\\ &=\sum_{n=1}^\infty\left(\frac{12H_n}{n^5}+\frac{6H_n^{(2)}}{n^4}+\frac{2H_n^{(3)}}{n^3}-\frac{20}{n^6}\right)\int_0^1 x^{n-1}\operatorname{Li}_2(x)\ dx\quad \text{apply integration by parts}\\ &=\sum_{n=1}^\infty\left(\frac{12H_n}{n^5}+\frac{6H_n^{(2)}}{n^4}+\frac{2H_n^{(3)}}{n^3}-\frac{20}{n^6}\right)\left(\frac{\zeta(2)}{n}-\frac{H_n}{n^2}\right)\\ &=\zeta(2)S-12\sum_{n=1}^\infty\frac{H_n^2}{n^7}-6\sum_{n=1}^\infty\frac{H_nH_n^{(2)}}{n^6}-2\sum_{n=1}^\infty\frac{H_nH_n^{(3)}}{n^5}+20\sum_{n=1}^\infty\frac{H_n}{n^8} \end{align} Reordenando los términos y conectar la caja resultado de $S$ , obtenemos

$$3\sum\limits_{n=1}^\infty\frac{H_nH_n^{(2)}}{n^6}+\sum\limits_{n=1}^\infty\frac{H_nH_n^{(3)}}{n^5}\\=\frac78\zeta(3)\zeta(6)-\frac54\zeta(4)\zeta(5)-\frac16\zeta^3(3)+\frac12\zeta(2)\sum_{n=1}^\infty\frac{H_n}{n^6}-6\sum_{n=1}^\infty\frac{H_n^2}{n^7}+10\sum_{n=1}^\infty\frac{H_n}{n^8}\tag{2}$$

Tenemos

$$\sum_{n=1}^\infty\frac{H_n}{n^6}=4\zeta(7)-\zeta(2)\zeta(5)-\zeta(3)\zeta(4)\tag{3}$$

$$\sum_{k=1}^\infty\frac{H_k}{k^8}=5\zeta(9)-\zeta(2)\zeta(7)-\zeta(3)\zeta(6)-\zeta(4)\zeta(5)\tag{4}$$

$$\sum_{n=1}^\infty\frac{H_n^2}{n^7}=-\zeta(2)\zeta(7)-\frac72\zeta(3)\zeta(6)+\frac13\zeta^3(3)-\frac{5}{2}\zeta(4)\zeta(5)+\frac{55}{6}\zeta(9)\tag{5}$$

Los resultados de $(3)$ e $(4)$ puede ser obtenido a partir de la identidad de Euler y el resultado de $(5)$ se puede encontrar aquí.

Sustituyendo los resultados de $(3)$, $(4)$ e $(5)$ en $(2)$, tenemos nuestra forma cerrada.

.


Un agradecimiento especial a Cornel para mostrarnos cómo ampliar estos polylogarithms el uso de Cauchy producto. Más polylogarithmic identidades se pueden encontrar en su libro , Casi Imposible Integrales, Sumas, y de la Serie.

5voto

omegadot Puntos 156

En respuesta a su pregunta, ¿se pueden evaluar las sumas por separado? Sí pueden. Los resultados para cada una de estas dos sumas de Euler se pueden encontrar en las sumas de Euler en papel de 2016 y las integrales de las funciones de pollogaritmo de Ce Xu et al .

Los resultados son: $$\sum_{n = 1}^\infty \frac{H_n H^{(2)}_n}{n^6} = \frac{17}{6} \zeta (3) \zeta (6) + \frac{173}{72} \zeta (9) + \frac{1}{4} \zeta (4) \zeta (5) - 3 \zeta (2) \zeta (7) - \frac{2}{3} \zeta^3 (3) \quad \text{(See Eq. 3.18)}$ $ y $$\sum_{n = 1}^\infty \frac{H_n H^{(3)}_n}{n^5} = \frac{679}{24} \zeta (9) - 11 \zeta (2) \zeta (7) - \frac{1}{2} \zeta (3) \zeta (6) - \frac{29}{4} \zeta (4) \zeta (5) - \frac{1}{6} \zeta^3 (3).$ $

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X