Lo demostraré por inducción. Sin pérdida de generalidad, supongamos $a_1 \le \cdots \le a_n$ . Resulta que esta desigualdad sigue siendo cierta para $n = 1, 2$ también, reduciendo a $1 \le 1$ en el primer caso. En realidad, tenemos que demostrar la $n = 2$ caso con el fin de obtener la intuición para el paso inductivo.
Caso base $n = 2$
Si $a_1 = a_2$ la desigualdad es trivial, por lo que se supone que $a_1 < a_2$ . A continuación, tratamos de demostrar \begin{align*} (a_1 + a_2)(a_1^{-1} + a_2^{-1}) \le 2^2 + |a_2 - a_1| &\iff \frac{a_1}{a_2} + \frac{a_2}{a_1} \le 2 + (a_2 - a_1) \tag{*}\\ &\iff 0 \le \frac{a_1^2}{a_2 - a_1} + a_1 - 1 \end{align*} lo cual es cierto a partir de las condiciones $a_i \ge 1$ .
Paso inductivo
Definir \begin{align*} S^A_n = \sum_{i=1}^{n}a_i \qquad \text{and} \qquad S^H_n = \sum_{i=1}^{n}a_i^{-1} \end{align*}
Utilizaremos la relación \begin{align*} \sum_{1 \le i < j \le n}|a_i - a_j| = 2\sum_{i=1}^{n}ia_i - (n+1)S^A_n \end{align*} Así que tenemos \begin{align*} S^A_{n+1}S^H_{n+1} &= S^A_n S^H_n + a_{n+1}S^H_n + a^{-1}_{n+1}S^A_n + 1 \\ &\le n^2 + \left[2\sum_{i=1}^{n}ia_i - (n+1)S^A_n\right] + a_{n+1}S^H_n + a^{-1}_{n+1}S^A_n + 1 & \text{(Inductive Hypothesis)} \\ &\overset{\text{def}}{=} M \end{align*} Para concluir, queremos demostrar que $M$ no supera \begin{align*} N &\overset{\text{def}}{=} (n+1)^2 + \left[2\sum_{i=1}^{n+1}ia_i - (n+2)S^A_{n+1}\right] \end{align*} Calcula la diferencia, \begin{align*} N - M &= 2n + 1 + 2(n+1)a_{n+1} - S^A_n - (n+2)a_{n+1} - a_{n+1}S^H_n - a^{-1}_{n+1}S^A_n -1\\ &= 2n + na_{n+1} - S^A_n - a_{n+1}S^H_n - a^{-1}_{n+1}S^A_n \end{align*} Por último, tenemos \begin{align*} na_{n+1} - S^A_n &= \sum_{i=1}^{n}(a_{n+1} - a_i) \\ &\ge\sum_{i=1}^{n}\left(\frac{a_i}{a_{n+1}}+\frac{a_{n+1}}{a_{i}}-2\right) & \text{From (*) in base step}\\ &=a_{n+1}S^H_n + a^{-1}_{n+1}S^A_n - 2n \end{align*}