Utilicemos la integración por partes:
$$I(z)=\int_0^z\ln\Gamma(t)~dt=z \ln\Gamma(z)-\int_0^z t \psi(t) dt$$
$$\psi(t)=\log t-\frac{1}{2t}-2 \int_0^\infty \frac{udu}{(u^2+t^2)(e^{2 \pi u}-1)}$$
$$\int_0^z t \log t dt=\frac{z^2}{4} (2 \log z-1)$$
$$\frac{1}{2}\int_0^z dt=\frac{z}{2}$$
$$2 \int_0^z \frac{t dt}{u^2+t^2}=\log \left(1+ \frac{z^2}{u^2} \right)$$
Lo que nos da:
$$I(z)=z \ln\Gamma(z)+\frac{z^2}{4} (1-2 \log z)+\frac{z}{2}+\int_0^\infty \frac{udu}{e^{2 \pi u}-1} \log \left(1+ \frac{z^2}{u^2} \right)$$
Comparando con la expresión de la OP, tenemos:
$$\log G(z+1)=\frac{z}{2} \left(\log(2 \pi)+z \log z- \frac{3 z}{2} \right)-\int_0^\infty \frac{udu}{e^{2 \pi u}-1} \log \left(1+ \frac{z^2}{u^2} \right)$$
Consideremos la integral:
$$J(z)=\int_0^\infty \frac{udu}{e^{2 \pi u}-1} \log \left(1+ \frac{z^2}{u^2} \right)$$
Cambiemos la variable:
$$u=z v$$
$$J(z)=z^2 \int_0^\infty \frac{vdv}{e^{2 \pi z v}-1} \log \left(1+ \frac{1}{v^2} \right)$$
$$J(z)=z^2 \sum_{n=1}^\infty \int_0^\infty e^{-2 \pi n z v}v \log \left(1+ \frac{1}{v^2} \right) dv$$
Lo tenemos:
$$z^2 \int_0^\infty e^{-2 \pi n z v}v \log \left(1+ v^2 \right) dv= \\ = \frac{1}{2 \pi^2 n^2} \left([2 \pi n z \cos (2 \pi n z)-\sin (2 \pi n z) ] \left(\operatorname{Si}(2 \pi n z)-\frac{\pi}{2} \right)- \\ -[2 \pi n z \sin (2 \pi n z)+\cos (2 \pi n z) ] \operatorname{Ci}(2 \pi n z)+1 \right)$$
$$2z^2 \int_0^\infty e^{-2 \pi n z v}v \log \left(v \right) dv= \frac{1}{2 \pi^2 n^2} \left(1-\gamma-\log (2 \pi n z) \right)$$
Lo que nos da:
$$J(z)=J_1(z)+J_2(z)+J_3(z)$$
$$J(z)=\frac{1}{2 \pi^2} \sum_{n=1}^\infty \frac{1}{n^2} \left(\gamma+\log(2 \pi) + \log z+ \log n \right)+ \\ + \frac{1}{2 \pi^2} \sum_{n=1}^\infty \frac{1}{n^2} \left([2 \pi n z \cos (2 \pi n z)-\sin (2 \pi n z) ] \left(\operatorname{Si}(2 \pi n z)-\frac{\pi}{2} \right) - \\ -[2 \pi n z \sin (2 \pi n z)+\cos (2 \pi n z) ] \operatorname{Ci}(2 \pi n z) \right)$$
La primera parte es sencilla:
$$J_1(z)=\frac{\gamma+\log(2 \pi) + \log z}{12}$$
$$J_2(z)=\frac{1}{2 \pi^2} \sum_{n=1}^\infty \frac{\log n}{n^2}=- \frac{1}{12} (\gamma+ \log(2 \pi))+\log A$$
Así que:
$$J_1(z)+J_2(z)=\frac{\log z}{12}+\log A$$
El resto de las series tienen una forma muy complicada, a menos que $z$ es un entero o medio entero.
$$J_3(z)=\frac{1}{2 \pi^2} \sum_{n=1}^\infty \frac{1}{n^2} \left([2 \pi n z \cos (2 \pi n z)-\sin (2 \pi n z) ] \left(\operatorname{Si}(2 \pi n z)-\frac{\pi}{2} \right) - \\ -[2 \pi n z \sin (2 \pi n z)+\cos (2 \pi n z) ] \operatorname{Ci}(2 \pi n z) \right)$$
Sin embargo, hay que tener en cuenta las identidades de la Wikipedia:
$$\int _{0}^{\infty }{\frac {\sin(t)}{t+x}}dt=\int _{0}^{\infty }{\frac {e^{-xt}}{t^{2}+1}}dt=\operatorname {Ci} (x)\sin(x)+\left[{\frac {\pi }{2}}-\operatorname {Si} (x)\right]\cos(x)$$
$$\int _{0}^{\infty }{\frac {\cos(t)}{t+x}}dt=\int _{0}^{\infty }{\frac {te^{-xt}}{t^{2}+1}}dt=-\operatorname {Ci} (x)\cos(x)+\left[{\frac {\pi }{2}}-\operatorname {Si} (x)\right]\sin(x)$$
Con un poco de cuidado podemos encontrar una forma alternativa para la serie que muy probablemente conducirá a funciones de Clausen, al menos para algunos valores especiales de $z$ .
$$J_3(z)=\frac{1}{2 \pi^2} \sum_{n=1}^\infty \frac{1}{n^2} \int _{0}^{\infty }{\frac {\cos(t)}{t+2 \pi n z}}dt -\frac{z}{\pi} \sum_{n=1}^\infty \frac{1}{n} \int _{0}^{\infty }{\frac {\sin(t)}{t+2 \pi n z}}dt$$
$$J_3(z)=J_4(z)+J_5(z)$$
Nótese que podemos representar las integrales como
$$\int _{0}^{\infty }{\frac {\cos(\pi u)}{u+ 2 n z}}du= \sum_{m=0}^\infty \int_{m}^{m+1} \frac {\cos(\pi u)}{u+ 2n z} du=\sum_{m=0}^\infty (-1)^m \int_0^1 \frac {\cos(\pi u)}{u+m+ 2n z} du$$
$$\int _{0}^{\infty }{\frac {\sin(\pi u)}{u+ 2 n z}}du= \sum_{m=0}^\infty \int_{m}^{m+1} \frac {\sin(\pi u)}{u+ 2n z} du=\sum_{m=0}^\infty (-1)^m \int_0^1 \frac {\sin(\pi u)}{u+m+ 2n z} du$$
Creo que la solución está en este camino.
Está especialmente claro por qué $z=1/2$ da la forma más sencilla.
La integración repetida por partes nos da:
$$\int_0^1 \frac {\sin(\pi u)}{u+m+ 2n z} du = \frac{1}{\pi} \left(\frac{1}{m+ 2n z+1}+\frac{1}{m+ 2n z} \right)-\frac{2}{\pi^2} \int_0^1 \frac {\sin(\pi u)}{(u+m+ 2n z)^3} du$$
$$\int_0^1 \frac {\cos(\pi u)}{u+m+ 2n z} du = \frac{1}{\pi} \int_0^1 \frac {\sin(\pi u)}{(u+m+ 2n z)^2} du$$
Que separa la expresión en cuatro series dobles:
$$S_1(z)=-\frac{z}{\pi^2} \sum_{n=1}^\infty \sum_{m=0}^\infty \frac{(-1)^m}{n(m+2nz+1)}$$
$$S_2(z)=-\frac{z}{\pi^2} \sum_{n=1}^\infty \sum_{m=0}^\infty \frac{(-1)^m}{n(m+2nz)}$$
$$S_3(z)=\frac{2z}{\pi^3} \sum_{n=1}^\infty \sum_{m=0}^\infty \frac{(-1)^m}{n} \int_0^1 \frac {\sin(\pi u)}{(u+m+ 2n z)^3} du$$
$$S_4(z)=\frac{1}{2\pi^3} \sum_{n=1}^\infty \sum_{m=0}^\infty \frac{(-1)^m}{n^2} \int_0^1 \frac {\sin(\pi u)}{(u+m+ 2n z)^2} du$$
Obsérvese que las dos últimas series tienen el mismo orden de convergencia.
Suma con respecto a $m$ de las dos primeras series nos da:
$$S_1+S_2=-\frac{z}{2\pi^2} \sum_{n=1}^\infty \frac{1}{n} \left(\psi(zn+1)-\psi(zn) \right)=- \frac{1}{12}$$
Entonces:
$$J(z)=\frac{\log z-1}{12}+\log A+S_3(z)+S_4(z)$$
Si colapsamos el $m$ serie de nuevo en $S_3,S_4$ las nuevas integrales y el $n$ convergerán absolutamente, a diferencia de las originales. Por lo tanto, puede haber alguna forma agradable de evaluarlas.
$$S_3(z)=\frac{2z}{\pi^3} \sum_{n=1}^\infty \frac{1}{n^3} \int_0^\infty \frac {\sin(\pi n u)}{(u+2 z)^3} du=\frac{1}{2\pi^3 z} \int_0^\infty \frac {\operatorname{Sl}_3(2\pi z u)}{(u+1)^3} du$$
$$S_4(z)=\frac{1}{2\pi^3} \sum_{n=1}^\infty \frac{1}{n^3} \int_0^\infty \frac {\sin(\pi n u)}{(u+ 2 z)^2} du=\frac{1}{4\pi^3 z} \int_0^\infty \frac {\operatorname{Sl}_3(2\pi z u)}{(u+1)^2} du$$
El segundo tipo de funciones Clausen $\operatorname{Sl}_n$ se denotan a veces como $\operatorname{Gl}_n$ .
$$J(z)=\frac{\log z-1}{12}+\log A+\frac{1}{4\pi^3 z} \int_0^\infty \frac {\operatorname{Sl}_3(2\pi z u) (u+3)}{(u+1)^3} du$$
Tomemos:
$$z= \frac{1}{q}, u = q v$$
$$S_3 \left(\frac1q \right)=\frac{q^2}{2\pi^3} \int_0^\infty \frac {\operatorname{Sl}_3(2\pi v)}{(qv+1)^3} dv=\frac{1}{2 q\pi^3} \sum_{m=0}^\infty \int_0^1 \frac {\operatorname{Sl}_3(2\pi v)}{(v+m+1/q)^3} dv$$
$$S_3 \left(\frac1q \right)=-\frac{1}{4 q\pi^3} \int_0^1 \operatorname{Sl}_3(2\pi v)~ \psi ^{(2)}\left(v+\frac{1}{q}\right) dv$$
$$S_4 \left(\frac1q \right)=\frac{1}{4 \pi^3} \int_0^1 \operatorname{Sl}_3(2\pi v)~ \psi ^{(1)}\left(v+\frac{1}{q}\right) dv$$
Para $0<v<1$ resulta que $\operatorname{Sl}_2(2\pi v)$ se representan mediante polinomios de Bernoulli, por lo que
$$\operatorname{Sl}_3(2\pi v)= \frac23 \pi^3 B_3 (v)= \frac26 \pi^3\left(v-3v^2+2 v^3 \right)$$
Así que tenemos:
$$S_3 \left(\frac1q \right)=-\frac{1}{12 q} \int_0^1 (v-3v^2+2 v^3 )~ \psi ^{(2)}\left(v+\frac{1}{q}\right) dv$$
$$S_4 \left(\frac1q \right)=\frac{1}{12} \int_0^1 (v-3v^2+2 v^3 )~ \psi ^{(1)}\left(v+\frac{1}{q}\right) dv$$
Utilizando la integración por partes:
$$S_3 \left(\frac1q \right)=\frac{1}{12 q} \int_0^1 (1-6v+6 v^2 )~ \psi ^{(1)}\left(v+\frac{1}{q}\right) dv$$
$$S_3 \left(\frac1q \right)+S_4 \left(\frac1q \right)=\frac{1}{12 q} \int_0^1 (1+(q-6)v+3(2-q) v^2 +2q v^3)~ \psi ^{(1)}\left(v+\frac{1}{q}\right) dv$$
Usando de nuevo la integración por partes:
$$S_3 \left(\frac1q \right)+S_4 \left(\frac1q \right)=\frac{1}{12 q} \left(\psi \left(1+\frac{1}{q}\right)-\psi \left(\frac{1}{q}\right)\right) - \\ - \frac{1}{2 q} \int_0^1 \left(\frac{q}{6}-1+(2-q) v +q v^2\right)~ \psi \left(v+\frac{1}{q}\right) dv$$
Así que tenemos:
$$J (z)=\log A+\frac{z}{12} \left(\psi (1+z)-\psi (z)\right)+\frac{\log z-1}{12} - \\ -\frac{1}{2} \int_0^1 \left(\frac{1}{6}-z+(2z-1) v + v^2\right)~ \psi \left(v+z\right) dv $$
Usando de nuevo la integración por partes:
$$J (z)=\log A+\frac{z}{12} \left(\psi (1+z)-\psi (z)\right)+\frac{\log z-1}{12} - \\ -\frac{1}{2} \left(\frac{1}{6}+z\right)~ \log \Gamma(1+z)+\frac{1}{2} \left(\frac{1}{6}-z\right)~ \log \Gamma(z) + \\ + \frac{1}{2} \int_0^1 \left(2z-1 + 2v\right)~ \log \Gamma \left(v+z\right) dv $$
Volvemos a la integral log-Gamma, pero un poco diferente. Cambiando $v=t-z$ obtenemos:
$$J (z)=\log A+\frac{z}{12} \left(\psi (1+z)-\psi (z)\right)+\frac{\log z-1}{12} - \\ -\frac{1}{2} \left(\frac{1}{6}+z\right)~ \log \Gamma(1+z)+\frac{1}{2} \left(\frac{1}{6}-z\right)~ \log \Gamma(z) + \\ + \frac{1}{2} \int_z^{1+z} \left(2t-1\right)~ \log \Gamma \left(t\right) dt $$
Usando esto y comparando con la integral original, obtenemos una curiosa identidad:
$$\int_0^z \log \Gamma(t) dt- \int_z^{1+z} \left(t-\frac{1}{2} \right) \log \Gamma(t) dt= \\ = \frac{z}{12} \left(\psi (1+z)-\psi (z)\right)- \frac{z(1+z)}{2} \log z+ \frac{z(z+2)}{4}+\log A- \frac{1}{12}$$
O, si denotamos:
$$I(z)=\int_0^z \log \Gamma(t) dt \\ Y(z)=\int_0^z t \log \Gamma(t) dt=z I(z)-\int_0^z I(t) dt$$
$$\frac{1}{2} (I(z)+I(z+1))=Y(z+1)-Y(z)+ \\ + \frac{z}{12} \left(\psi (z+1)-\psi (z)\right)- \frac{z(z+1)}{2} \log z+ \frac{z(z+2)}{4}+\log A- \frac{1}{12} \tag{*}$$
No parece muy útil en este caso, sin embargo podría ser una buena definición para la constante de Glaisher-Kinkelin.