Es posible que si $n\equiv_6-1$ y $n+2=b^k$ es potencia de algún primo $b$ entonces $b\mid f(n)$ .
Comprobado hasta $n=10^5$ sin excepciones.
código gp:
nbk()=
{
for(n=1, 10^5, f= n^(n+1)+(n+1)^(n+2);
if(n%6==5,
k= ispower(n+2, , &b);
if(k&&isprime(b),
if(f%b==0,
print("n = "n" f("n")%"b" = "f%b" b = "b" k = "k)
,
print("---- "n" f("n")%"b" = "f%b" b = "b" k = "k);
break()
)
)
)
)
};
La salida:
n = 23 f(23)%5 = 0 b = 5 k = 2
n = 47 f(47)%7 = 0 b = 7 k = 2
n = 119 f(119)%11 = 0 b = 11 k = 2
n = 167 f(167)%13 = 0 b = 13 k = 2
n = 287 f(287)%17 = 0 b = 17 k = 2
n = 341 f(341)%7 = 0 b = 7 k = 3
n = 359 f(359)%19 = 0 b = 19 k = 2
n = 527 f(527)%23 = 0 b = 23 k = 2
n = 623 f(623)%5 = 0 b = 5 k = 4
n = 839 f(839)%29 = 0 b = 29 k = 2
n = 959 f(959)%31 = 0 b = 31 k = 2
n = 1367 f(1367)%37 = 0 b = 37 k = 2
n = 1679 f(1679)%41 = 0 b = 41 k = 2
n = 1847 f(1847)%43 = 0 b = 43 k = 2
n = 2195 f(2195)%13 = 0 b = 13 k = 3
n = 2207 f(2207)%47 = 0 b = 47 k = 2
n = 2399 f(2399)%7 = 0 b = 7 k = 4
n = 2807 f(2807)%53 = 0 b = 53 k = 2
n = 3479 f(3479)%59 = 0 b = 59 k = 2
n = 3719 f(3719)%61 = 0 b = 61 k = 2
n = 4487 f(4487)%67 = 0 b = 67 k = 2
n = 5039 f(5039)%71 = 0 b = 71 k = 2
n = 5327 f(5327)%73 = 0 b = 73 k = 2
n = 6239 f(6239)%79 = 0 b = 79 k = 2
n = 6857 f(6857)%19 = 0 b = 19 k = 3
n = 6887 f(6887)%83 = 0 b = 83 k = 2
n = 7919 f(7919)%89 = 0 b = 89 k = 2
n = 9407 f(9407)%97 = 0 b = 97 k = 2
n = 10199 f(10199)%101 = 0 b = 101 k = 2
n = 10607 f(10607)%103 = 0 b = 103 k = 2
n = 11447 f(11447)%107 = 0 b = 107 k = 2
n = 11879 f(11879)%109 = 0 b = 109 k = 2
n = 12767 f(12767)%113 = 0 b = 113 k = 2
n = 14639 f(14639)%11 = 0 b = 11 k = 4
n = 15623 f(15623)%5 = 0 b = 5 k = 6
n = 16127 f(16127)%127 = 0 b = 127 k = 2
n = 16805 f(16805)%7 = 0 b = 7 k = 5
n = 17159 f(17159)%131 = 0 b = 131 k = 2
n = 18767 f(18767)%137 = 0 b = 137 k = 2
n = 19319 f(19319)%139 = 0 b = 139 k = 2
n = 22199 f(22199)%149 = 0 b = 149 k = 2
n = 22799 f(22799)%151 = 0 b = 151 k = 2
n = 24647 f(24647)%157 = 0 b = 157 k = 2
n = 26567 f(26567)%163 = 0 b = 163 k = 2
n = 27887 f(27887)%167 = 0 b = 167 k = 2
n = 28559 f(28559)%13 = 0 b = 13 k = 4
n = 29789 f(29789)%31 = 0 b = 31 k = 3
n = 29927 f(29927)%173 = 0 b = 173 k = 2
n = 32039 f(32039)%179 = 0 b = 179 k = 2
n = 32759 f(32759)%181 = 0 b = 181 k = 2
n = 36479 f(36479)%191 = 0 b = 191 k = 2
n = 37247 f(37247)%193 = 0 b = 193 k = 2
n = 38807 f(38807)%197 = 0 b = 197 k = 2
n = 39599 f(39599)%199 = 0 b = 199 k = 2
n = 44519 f(44519)%211 = 0 b = 211 k = 2
n = 49727 f(49727)%223 = 0 b = 223 k = 2
n = 50651 f(50651)%37 = 0 b = 37 k = 3
n = 51527 f(51527)%227 = 0 b = 227 k = 2
n = 52439 f(52439)%229 = 0 b = 229 k = 2
n = 54287 f(54287)%233 = 0 b = 233 k = 2
n = 57119 f(57119)%239 = 0 b = 239 k = 2
n = 58079 f(58079)%241 = 0 b = 241 k = 2
n = 62999 f(62999)%251 = 0 b = 251 k = 2
n = 66047 f(66047)%257 = 0 b = 257 k = 2
n = 69167 f(69167)%263 = 0 b = 263 k = 2
n = 72359 f(72359)%269 = 0 b = 269 k = 2
n = 73439 f(73439)%271 = 0 b = 271 k = 2
n = 76727 f(76727)%277 = 0 b = 277 k = 2
n = 78959 f(78959)%281 = 0 b = 281 k = 2
n = 79505 f(79505)%43 = 0 b = 43 k = 3
n = 80087 f(80087)%283 = 0 b = 283 k = 2
n = 83519 f(83519)%17 = 0 b = 17 k = 4
n = 85847 f(85847)%293 = 0 b = 293 k = 2
n = 94247 f(94247)%307 = 0 b = 307 k = 2
n = 96719 f(96719)%311 = 0 b = 311 k = 2
n = 97967 f(97967)%313 = 0 b = 313 k = 2