Solución alternativa:
\begin{align}
J&=\int_0^1 \frac{x\ln(1+x)}{1+x^2}\,dx\\
A&=\int_0^1 \frac{\ln(1+x^2)}{1+x}\,dx\\
&=\Big[\ln(1+x^2)\ln(1+x)\Big]_0^1-2\int_0^1 \frac{x\ln(1+x)}{1+x^2}\,dx\\
&=\ln^2 2-2J\\
J&=\frac{1}{2}\ln^2 2-\frac{1}{2}A\\
B&=\int_0^1 \frac{\ln\left(\frac{1-x^2}{1+x^2}\right)}{1+x}\,dx\\
C&=\int_0^1 \frac{\ln\left(1-x\right)}{1+x}\,dx\\
\end{align}
Realizar el cambio de variable $y=\dfrac{1-x^2}{1+x^2}$,
\begin{align}
B&=\frac{1}{2}\int_0^1 \frac{\left(\sqrt{1+x}-\sqrt{1-x}\right)\ln x}{x\sqrt{1-x}(1+x)}\,dx\\
&=\frac{1}{2}\int_0^1 \left(\frac{1}{\sqrt{1-x^2}}-\frac{1}{1+x}\right)\frac{\ln x}{x}\,dx\\
&=\frac{1}{2}\Big[\left(\ln(1+x)-\ln(1+\sqrt{1-x^2})+\ln 2\right)\ln x\Big]_0^1-\\
&\frac{1}{2}\int_0^1\frac{\ln(1+x)-\ln(1+\sqrt{1-x^2})+\ln 2}{x}\,dx\\
&=-\frac{1}{2}\int_0^1 \frac{\ln(1+x)}{x}\,dx+\frac{1}{2}\int_0^1\left(\frac{\ln(1+\sqrt{1-x^2})}{x}-\frac{\ln 2}{x}\right)\,dx
\end{align}
En la segunda integral, realizar el cambio de variable $y=\dfrac{1-\sqrt{1-x^2}}{1+\sqrt{1-x^2}}$,
\begin{align}
B&=-\frac{1}{2}\int_0^1 \frac{\ln(1+x)}{x}\,dx-\frac{1}{4}\int_0^1 \frac{(1-x)\ln(1+x)}{x(1+x)}\,dx\\
&=-\frac{1}{2}\int_0^1 \frac{\ln(1+x)}{x}\,dx-\frac{1}{4}\int_0^1\left(\frac{\ln(1+x)}{x}-\frac{2\ln(1+x)}{1+x}\right)\,dx\\
&=-\frac{3}{4}\int_0^1 \frac{\ln(1+x)}{x}\,dx+\frac{1}{4}\Big[\ln^2(1+x)\Big]_0^1\\
&=\left(-\frac{3}{4}\Big[\ln x\ln(1+x)\Big]_0^1+\frac{3}{4}\int_0^1 \frac{\ln x}{1+x}\,dx\right)+\frac{1}{4}\ln^2 2\\
&=\frac{3}{4}\int_0^1 \frac{\ln x}{1+x}\,dx+\frac{1}{4}\ln^2 2\\
\end{align}
Realizar el cambio de variable $y=\dfrac{1-x}{1+x}$,
\begin{align}
C&=\int_0^1 \frac{\ln\left(\frac{2x}{1+x}\right)}{1+x}\,dx\\
&=\int_0^1 \frac{\ln 2}{1+x}\,dx+\int_0^1 \frac{\ln x}{1+x}\,dx-\int_0^1 \frac{\ln(1+x)}{1+x}\,dx\\
&=\ln^2 2+\int_0^1 \frac{\ln x}{1+x}\,dx-\frac{1}{2}\ln^2 2\\
&=\int_0^1 \frac{\ln x}{1+x}\,dx+\frac{1}{2}\ln^2 2\\
B&=\int_0^1 \frac{\ln\left(\frac{(1-x)(1+x)}{1+x^2}\right)}{1+x}\,dx\\
&=C+\int_0^1 \frac{\ln(1+x)}{1+x}\,dx-A\\
&=C+\frac{1}{2}\ln^2 2-A
\end{align}
Por lo tanto,
\begin{align}A&=C+\frac{1}{2}\ln^2 2-B\\
&=\left(\int_0^1 \frac{\ln x}{1+x}\,dx+\frac{1}{2}\ln^2 2\right)+\frac{1}{2}\ln^2 2-\left(\frac{3}{4}\int_0^1 \frac{\ln x}{1+x}\,dx+\frac{1}{4}\ln^2 2\right)\\
&=\frac{1}{4}\int_0^1 \frac{\ln x}{1+x}\,dx+\frac{3}{4}\ln^2 2\\
&=\frac{1}{4}\left(\int_0^1 \frac{\ln x}{1-x}\,dx-\frac{2x\ln x}{1-x^2}\,dx\right)+\frac{3}{4}\ln^2 2
\end{align}
En la segunda integral realizar el cambio de variable $y=x^2$,
\begin{align}A&=\frac{1}{4}\left(\int_0^1 \frac{\ln x}{1-x}\,dx-\frac{1}{2}\int_0^1\frac{\ln x}{1-x}\,dx\right)+\frac{3}{4}\ln^2 2\\
&=\frac{1}{8}\int_0^1\frac{\ln x}{1-x}\,dx+\frac{3}{4}\ln^2 2\\
J&=\frac{1}{2}\ln^2 2-\frac{1}{2}\left(\frac{1}{8}\int_0^1\frac{\ln x}{1-x}\,dx+\frac{3}{4}\ln^2 2\right)\\
&=\frac{1}{8}\ln^2 2-\frac{1}{16}\int_0^1\frac{\ln x}{1-x}\,dx\\
&=\boxed{\frac{1}{8}\ln^2 2+\frac{1}{96}\pi^2}\\
\end{align}