A veces la mejor manera de demostrar que $A=B$ es simplemente olvidar todo acerca de $B,$ y sólo tienen un montón de diversión de forma independiente explorar la belleza de $A$ nuevo, con nuevos ojos, por el propio placer intelectual, sin tener ningún tipo de preocupaciones innecesarias sobre la muy esperada llegada al punto de $B$ amenazadoramente se cierne sobre la mente, como una nube oscura, de todo tipo. Esta es básicamente la matemática equivalente a la gastada filosófica que se dice sobre un verdadero viajero no saber su destino.
Ahora, cualquier camino, no importa cómo es largo, comienza con un simple paso. Entonces, ¿qué si yo fuera simplemente a decirle que $$(x+a)^2=x^2+2ax+a^2~?$$ You'd probably say that, apart from being painfully obvious, it is also of no practical use to us, since we are dealing with a fourth degree $($or quartic$)$ expression, rather than a humble quadratic. But what if we'd replace $x$ by $x^2$ ? Then the polynomial expression would soon become $$(x^2+a)^2=x^4+2ax^2+a^2,$$ bringing it much closer to our intended form for $A(x)$. Just two "small" problems: $39$ is odd, and $50$ is not a perfect square. So let's put this on pause for a second, and take a look at the remaining two terms, $10x^3+70x:$ is there nothing that can be done here ? "Well, sure there is!", you might retort. "Both share a common factor, $10x.$" So let's see where that takes us, shall we ? $$10x^3+70x=10x~(x^2+7).$$ But, wait a second here, doesn't the latter expression, $x^2+7,$ look suspiciously similar to our initial one, $x^2+a$ ? In which case, $a^2=7^2=49,$ which comes incredibly close to our original $50=49+1,$ and $2a=2\cdot7=14,$ whose difference until $39$ is $39-14=25=5^2,$ which $($remaining$)$ coefficient fits ever so nicely with the $x^2$ it multiplies. Wrapping it all up, the polynomial becomes $$A(x)=(x^2+7)^2+2\cdot5x~(x^2+7)+(5x)^2+1,$$ at which point the factoring $A(x)=\Big[(x^2+7)+5x\Big]^2+1$ should become rather transparent.
Further writing $1=-i^2,$ and using $a^2-b^2=(a-b)(a+b),$ we eventually obtain $$A(x)=(x^2+5x+7-i)~(x^2+5x+7+i).$$ Since $(7-i)~(7+i)=7^2-i^2=49+1=50,$ we are most likely looking for something like $$A(x)=\Big[x^2+(5-n)~x+p\Big]\cdot\Big[x^2+(5+n)~x+q\Big],$$ with $pq=50$. $($Would you like me to finish this for you, or do you, by any chance, already feel confident enough to take it from here $?).$