6 votos

Calcule la siguiente suma en forma cerrada:$\sum_{n=1}^{\infty}\frac{n\binom{2n}{n}}{4^{n}(2n+1)(2n-1)(4n+1)}$

PS

Sé que $$\text{Find : }\sum_{n=1}^{\infty}\frac{n\binom{2n}{n}}{4^{n}(2n+1)(2n-1)(4n+1)}$ así que $\displaystyle\sum_{n=0}^{\infty}\binom{2n}{n}x^{2n}=\frac{1}{\sqrt{1-4x^{2}}}$ .

Pero no sé si debe completar este trabajo porque encuentro la función hipergeométrica.

7voto

Paul Enta Puntos 41

Como se comentó en el OP, \begin{equation} \sum_{n=0}^{\infty}\binom{2n}{n}x^{2n}=\frac{1}{\sqrt{1-4x^{2}}} \end{equation} o, cambiando $x\to x/2$, \begin{equation} \sum_{n=0}^{\infty}\frac{1}{4^n}\binom{2n}{n}x^{2n}=\frac{1}{\sqrt{1-x^{2}}} \end{equation} Utilizamos la descomposición \begin{equation} \frac{n}{\left( 2n-1 \right)\left( 2n+1 \right)\left( 4n+1 \right)}=\frac{1}{12}\frac{1}{2n-1}-\frac{1}{4}\frac{1}{2n+1}+\frac{1}{3}\frac{1}{4n+1} \end{equation} Entonces, para $\left|x\right|<1$, como los tres de la serie converge absolutamente \begin{equation} \sum_{n=1}^{\infty}\frac{1}{4^n}\binom{2n}{n}\frac{nx^{2n}}{\left( 2n-1 \right)\left( 2n+1 \right)\left( 4n+1 \right)}=\frac{1}{12}S_--\frac{1}{4}S_++\frac{1}{3}S_2 \end{equation} donde \begin{align} S_+&=\sum_{n=1}^{\infty}\frac{1}{4^n}\binom{2n}{n}\frac{1}{ 2n+1}\\ S_-&=\sum_{n=1}^{\infty}\frac{1}{4^n}\binom{2n}{n}\frac{1}{2n-1}\\ S_2&=\sum_{n=1}^{\infty}\frac{1}{4^n}\binom{2n}{n}\frac{1}{4n+1} \end{align} Con la notación \begin{equation} f(x)=\frac{1}{\sqrt{1-x^{2}}} \end{equation} mediante la integración de las anteriores de la serie, hemos \begin{align} \sum_{n=1}^{\infty}\frac{1}{4^n}\binom{2n}{n}x^{2n}&=f(x)-1\\ S_+=\sum_{n=1}^{\infty}\frac{1}{4^n}\binom{2n}{n}\frac{1}{2n+1}&=\int_0^1 \left[f(x)-1\right]\,dx\\ &=\frac{\pi}{2}-1 \end{align} Un simple transformaciones es necesario forevaluating $S_-$: \begin{align} \sum_{n=1}^{\infty}\frac{1}{4^n}\binom{2n}{n}x^{2n-2}&=\frac{f(x)-1}{x^2}\\ S_-=\sum_{n=1}^{\infty}\frac{1}{4^n}\binom{2n}{n}\frac{1}{2n-1}&=\int_0^1\frac{f(x)-1}{x^2}\,dx\\ &=1 \end{align} Para el tercer término, el cambio de $x\to x^2$ en la serie antes de la integración de \begin{align} \sum_{n=1}^{\infty}\frac{1}{4^n}\binom{2n}{n}x^{4n}&=f(x^2)-1\\ S_2=\sum_{n=1}^{\infty}\frac{1}{4^n}\binom{2n}{n}\frac{1}{4n+1}&=\int_0^1\frac{dx}{\sqrt{1-x^4}}-1\\ &=\frac{\Gamma(\frac{5}{4})\sqrt{\pi}}{\Gamma(\frac{3}{4})}-1\\ &=\frac{\left[\Gamma\left( 1/4\right)\right]^2 }{4\sqrt{2\pi}}-1 \end{align} Este clásico de la integral se puede encontrar por ejemplo aquí.

Poner todos los resultados en conjunto da \begin{equation} \sum_{n=1}^{\infty}\frac{n\binom{2n}{n}}{4^{n}(2n+1)(2n-1)(4n+1)}=-\frac{\pi}{8}+\frac{\left[\Gamma\left( 1/4\right)\right]^2 }{12\sqrt{2\pi}} \end{equation} que también es idéntico al resultado dado por @ChipHurst en los comentarios.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X