$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\int_{0}^{\infty}{\expo{x} - 1 \over x\expo{x}\pars{\expo{x} + 1}}\,\dd x & =
\int_{0}^{\infty}{\expo{-x} - \expo{-2x} \over x\pars{1 + \expo{-x}}}\,\dd x
\,\,\,\stackrel{\expo{-x}\ =\ t}{=}\,\,\,
\int_{1}^{0}{t - t^{2} \over \bracks{-\ln\pars{t}}\pars{1 + t}}
\,\pars{-\,{\dd t \over t}}
\\[5mm] & =
\int_{0}^{1}{1 \over 1 + t}\,\
\overbrace{{t - 1 \over \ln\pars{t}}}^{\ds{\int_{0}^{1}t^{x}\,\dd x}}\
\,\dd t =
\int_{0}^{1}\int_{0}^{1}{t^{x} - t^{x + 1} \over 1 - t^{2}}\,\dd t\,\dd x
\\[5mm] & \stackrel{t^{2}\ \mapsto\ t}{=}\,\,\,
{1 \over 2}\int_{0}^{1}
\int_{0}^{1}{t^{\pars{x - 1}/2}\,\,\, -\,\,\, t^{x/2} \over 1 - t}\,\dd t\,\dd x \\[5mm] & =
{1 \over 2}\int_{0}^{1}\bracks{%
\int_{0}^{1}{1 - t^{x/2} \over 1 - t}\,\dd t -
\int_{0}^{1}{1 - t^{\pars{x - 1}/2} \over 1 - t}\,\dd t}\,\dd x
\\[5mm] & =
{1 \over 2}\int_{0}^{1}
\bracks{\Psi\pars{{x \over 2} + 1} - \Psi\pars{x + 1 \over 2}}\,\dd x
\end{align}
donde
$\ds{\Psi}$ es la Función Digamma. A continuación,
\begin{align}
\int_{0}^{\infty}{\expo{x} - 1 \over x\expo{x}\pars{\expo{x} + 1}}\,\dd x & =
\left.\ln\pars{\Gamma\pars{x/2 + 1} \over
\Gamma\pars{\bracks{x + 1}/2}}\right\vert_{\ 0}^{\ 1} =
\ln\pars{{\Gamma\pars{3/2} \over \Gamma\pars{1}}\,
{\Gamma\pars{1/2} \over \Gamma\pars{1}}} =
\ln\pars{{1 \over 2}\,\Gamma^{2}\pars{1 \over 2}}
\\[5mm] & =
\bbox[15px,#ffe,border:2px dotted navy]{\ds{\ln\pars{\pi \over 2}}}
\end{align}