Elija bases de vectores $(\mathbf{u}_1,\dots,\mathbf{u}_m)$ e $(\mathbf{v}_1,\dots,\mathbf{v}_n)$, entonces el lineal mapa será completamente determinado por el lugar donde se asigna a cada una de las $\mathbf{u}_i$ a. Esto puede ser escrita en forma matricial:
$$\alpha(\mathbf{u}_1 \mathbf{u}_2 \cdots \mathbf{u}_m)=(\mathbf{v}_1 \mathbf{v}_2 \cdots \mathbf{v}_n) \left(\begin{array}{cccc} A_{11} & A_{12} & A_{13} & \cdots & A_{1m} \\ A_{21} & A_{22} & A_{23} & \cdots & A_{2m} \\
\vdots & \vdots & \vdots &\cdots &\vdots \\ A_{n1} & A_{n2} & A_{n3} &\cdots & A_{nm}\end{array}\right)$$
Ahora general de vectores puede ser escrito como
$$\mathbf{u}=X_1\mathbf{u}_1+X_2\mathbf{u}_2+\cdots+X_m\mathbf{u}_m=(\mathbf{u}_1 \mathbf{u}_2\cdots\mathbf{u}_m)\left(\begin{array}{c} X_1\\X_2\\\vdots\\X_m\end{array}\right)$$
$$\mathbf{v}=Y_1\mathbf{v}_1+Y_2\mathbf{v}_2+\cdots+Y_n\mathbf{v}_n=(\mathbf{v}_1 \mathbf{v}_2\cdots\mathbf{v}_n)\left(\begin{array}{c} Y_1\\Y_2\\\vdots\\Y_n\end{array}\right)$$
Después de elegir una base, los vectores pueden ser identificados con los vectores columna de $\mathbb{F}^m$ e $\mathbb{F}^n$.
Ahora, por la linealidad
$$\alpha(\mathbf{u})=\alpha\left[(\mathbf{u}_1 \mathbf{u}_2\cdots\mathbf{u}_m)\left(\begin{array}{c} X_1\\X_2\\\vdots\\X_m\end{array}\right)\right]$$
$$=(\mathbf{v}_1 \mathbf{v}_2 \cdots \mathbf{v}_n) \left(\begin{array}{cccc} A_{11} & A_{12} & A_{13} & \cdots & A_{1m} \\ A_{21} & A_{22} & A_{23} & \cdots & A_{2m} \\
\vdots & \vdots & \vdots &\cdots &\vdots \\ A_{n1} & A_{n_2} & A_{n3} &\cdots & A_{nm}\end{array}\right)\left(\begin{array}{c} X_1\\X_2\\\vdots\\X_m\end{array}\right)$$
$$=(\mathbf{v}_1 \mathbf{v}_2\cdots\mathbf{v}_n)\left(\begin{array}{c} Y_1\\Y_2\\\vdots\\Y_n\end{array}\right)$$
Por lo tanto
$$\left(\begin{array}{c} Y_1\\Y_2\\\vdots\\Y_n\end{array}\right)=\left(\begin{array}{cccc} A_{11} & A_{12} & A_{13} & \cdots & A_{1m} \\ A_{21} & A_{22} & A_{23} & \cdots & A_{2m} \\
\vdots & \vdots & \vdots &\cdots &\vdots \\ A_{n1} & A_{n2} & A_{n3} &\cdots & A_{nm}\end{array}\right)\left(\begin{array}{c} X_1\\X_2\\\vdots\\X_m\end{array}\right)$$
Esto significa $\alpha$ puede ser representado por una lineal mapa de $\mathbb{F}^m$ a $\mathbb{F}^n$ por encima de la multiplicación de la matriz.
Ahora, si el cambio de base a
$$(\tilde{\mathbf{u}}_1 \tilde{\mathbf{u}}_2 \cdots \tilde{\mathbf{u}}_m)=(\mathbf{u}_1 \mathbf{u}_2 \cdots \mathbf{u}_m)\left(\begin{array}{cccc} P_{11} & P_{12} & P_{13} & \cdots & P_{1m} \\ P_{21} & P_{22} & P_{23} & \cdots & P_{2m} \\
\vdots & \vdots & \vdots &\cdots &\vdots \\ P_{m1} & P_{m2} & P_{m3} &\cdots & P_{mm}\end{array}\right)$$
$$(\tilde{\mathbf{v}}_1 \tilde{\mathbf{v}}_2 \cdots \tilde{\mathbf{v}}_n)=(\mathbf{v}_1 \mathbf{v}_2 \cdots \mathbf{v}_n)\left(\begin{array}{cccc} Q_{11} & Q_{12} & Q_{13} & \cdots & Q_{1n} \\ Q_{21} & Q_{22} & Q_{23} & \cdots & Q_{2n} \\
\vdots & \vdots & \vdots &\cdots &\vdots \\ Q_{n1} & Q_{n2} & Q_{n3} &\cdots & Q_{nn}\end{array}\right)$$
Entonces
$$\mathbf{u}=(\mathbf{u}_1 \mathbf{u}_2\cdots\mathbf{u}_m)\left(\begin{array}{c} X_1\\X_2\\\vdots\\X_m\end{array}\right)=(\tilde{\mathbf{u}}_1 \tilde{\mathbf{u}}_2 \cdots \tilde{\mathbf{u}}_m)P^{-1}\left(\begin{array}{c} X_1\\X_2\\\vdots\\X_m\end{array}\right)=(\tilde{\mathbf{u}}_1 \tilde{\mathbf{u}}_2 \cdots \tilde{\mathbf{u}}_m)\left(\begin{array}{c} \tilde{X}_1\\\tilde{X}_2\\\vdots\\\tilde{X}_m\end{array}\right)$$
Por lo tanto
$$\left(\begin{array}{c} \tilde{X}_1\\\tilde{X}_2\\\vdots\\\tilde{X}_m\end{array}\right)=P^{-1}\left(\begin{array}{c} X_1\\X_2\\\vdots\\X_m\end{array}\right)$$
Del mismo modo,
$$\left(\begin{array}{c} \tilde{Y}_1\\\tilde{Y}_2\\\vdots\\\tilde{Y}_n\end{array}\right)=Q^{-1}\left(\begin{array}{c} Y_1\\Y_2\\\vdots\\Y_n\end{array}\right)$$
En la nueva base, $\alpha$ está determinado por
$$\alpha(\tilde{\mathbf{u}}_1 \tilde{\mathbf{u}}_2 \cdots \tilde{\mathbf{u}}_m)=(\tilde{\mathbf{v}}_1 \tilde{\mathbf{v}}_2 \cdots \tilde{\mathbf{v}}_n) \left(\begin{array}{cccc} \tilde{A}_{11} & \tilde{A}_{12} & \tilde{A}_{13} & \cdots & \tilde{A}_{1m} \\ \tilde{A}_{21} & \tilde{A}_{22} & \tilde{A}_{23} & \cdots & \tilde{A}_{2m} \\
\vdots & \vdots & \vdots &\cdots &\vdots \\ \tilde{A}_{n1} & \tilde{A}_{n2} & \tilde{A}_{n3} &\cdots & \tilde{A}_{nm}\end{array}\right)$$
Por lo tanto, tenemos
$$\alpha\left((\mathbf{u}_1 \mathbf{u}_2 \cdots \mathbf{u}_m)P\right)=(\mathbf{v}_1 \mathbf{v}_2 \cdots \mathbf{v}_n)Q\tilde{A}$$
$$\alpha(\mathbf{u}_1 \mathbf{u}_2 \cdots \mathbf{u}_m)P=(\mathbf{v}_1 \mathbf{v}_2 \cdots \mathbf{v}_n)Q\tilde{A}$$
$$\alpha(\mathbf{u}_1 \mathbf{u}_2 \cdots \mathbf{u}_m)=(\mathbf{v}_1 \mathbf{v}_2 \cdots \mathbf{v}_n)Q\tilde{A}P^{-1}$$
Por lo tanto,
$$A=Q\tilde{A}P^{-1}$$
o
$$\tilde{A}=Q^{-1}AP$$