Una pista:
$\cot12^\circ\cot24^\circ\cot28^\circ\cot32^\circ\cot48^\circ\cot88^\circ$
$=\cot24^\circ\dfrac{\cos(48^\circ-12^\circ)+\cos(48^\circ+12^\circ)}{\cos(48^\circ-12^\circ)-\cos(48^\circ+12^\circ)}\dfrac{\cos(32^\circ-28^\circ)+\cos(32^\circ+28^\circ)}{\cos(32^\circ-28^\circ)-\cos(32^\circ+28^\circ)}\tan2^\circ$
$=\cot24^\circ\dfrac{\cos36^\circ+\cos60^\circ}{\cos36^\circ-\cos60^\circ}\dfrac{\cos4^\circ+\cos60^\circ}{\cos4^\circ-\cos60^\circ}\tan2^\circ$
$=\cot24^\circ\dfrac{\cos36^\circ+\dfrac{1}{2}}{\cos36^\circ-\dfrac{1}{2}}\dfrac{\cos4^\circ+\dfrac{1}{2}}{\cos4^\circ-\dfrac{1}{2}}\tan2^\circ$
$=\cot24^\circ\dfrac{2\cos36^\circ+1}{2\cos36^\circ-1}\dfrac{2\cos4^\circ+1}{2\cos4^\circ-1}\tan2^\circ$