Olvidar el requisito de que $0<p<q<1$; es innecesario. Así que vamos a $p$ e $q$
ser cualquiera de reales satisfacer $p+q=1$.
También, permítanme extender el escenario un poco:
Definición. Deje $m$ e $n$ ser números enteros tales que $n\geq m\geq0$. A continuación, nos
vamos
\begin{equation}
Q_{n,m}=\sum_{k=m}^{n}\dbinom{n}{k}p^{k}q^{n-k}.
\end{equation}
Con esta definición, su $P_{2n}$ es $Q_{2n,n+1}$, mientras que su $P_{2n+2}$es
$Q_{2n+2,n+2}$. Por lo tanto, su demanda se convierte en:
Teorema 1. Deje $n$ ser un entero no negativo. A continuación,
\begin{equation}
Q_{2n+2,n+2}=Q_{2n,n+1}+\dbinom{2n}{n}p^{n+2}q^{n}-\dbinom{2n}{n+1}
p^{n+1}q^{n+1}.
\end{equation}
Voy a derivar desde el siguiente:
Lema 2. Deje $m$ e $n$ ser números enteros tales que $n\geq m\geq1$. A continuación,
\begin{equation}
Q_{n,m}=Q_{n-1,m-1}-\dbinom{n-1}{m-1}p^{m-1}q^{n-m+1}.
\end{equation}
La prueba del Lema 2. De $n\geq m\geq1$, obtenemos $n-1\geq m-1\geq0$. Ahora,
la definición de $Q_{n-1,m-1}$rendimientos
\begin{equation}
Q_{n-1,m-1}=\sum_{k=m-1}^{n-1}\dbinom{n-1}{k}p^{k}\underbrace{q^{n-1-k}
}_{=q^{n-k-1}}=\sum_{k=m-1}^{n-1}\dbinom{n-1}{k}p^{k}q^{n-k-1}.
\label{darij1.pf.l2.0}
\tag{1}
\end{equation}
Pero la definición de $Q_{n,m}$rendimientos
\begin{align}
Q_{n,m} & =\sum_{k=m}^{n}\underbrace{\dbinom{n}{k}}_{\substack{=\dbinom
{n-1}{k-1}+\dbinom{n-1}{k}\\\text{(by the recurrence of the binomial
coefficients)}}}p^{k}q^{n-k}=\sum_{k=m}^{n}\left( \dbinom{n-1}{k-1}
+\dbinom{n-1}{k}\right) p^{k}q^{n-k}\nonumber\\
& =\sum_{k=m}^{n}\dbinom{n-1}{k-1}p^{k}q^{n-k}+\sum_{k=m}^{n}\dbinom{n-1}
{k}p^{k}q^{n-k}\nonumber\\
& =\sum_{k=m-1}^{n-1}\underbrace{\dbinom{n-1}{\left( k+1\right) -1}
}_{=\dbinom{n-1}{k}}p^{k+1}\underbrace{q^{n-\left( k+1\right) }}
_{=q^{n-k-1}}+\sum_{k=m}^{n}\dbinom{n-1}{k}p^{k}q^{n-k}\nonumber\\
& \qquad\left( \text{here, we have substituted }k+1\text{ for }k\text{ in
the first sum}\right) \nonumber\\
& =\sum_{k=m-1}^{n-1}\dbinom{n-1}{k}p^{k+1}q^{n-k-1}+\sum_{k=m}^{n}
\dbinom{n-1}{k}p^{k}q^{n-k}.
\label{darij1.pf.l2.1}
\tag{2}
\end{align}
Pero tenemos
\begin{equation}
\sum_{k=m-1}^{n}\dbinom{n-1}{k}p^{k}q^{n-k}=\sum_{k=m}^{n}\dbinom{n-1}{k}
p^{k}q^{n-k}+\dbinom{n-1}{m-1}p^{m-1}q^{n-\left( m-1\right) }
\end{equation}
y
\begin{align*}
\sum_{k=m-1}^{n}\dbinom{n-1}{k}p^{k}q^{n-k} & =\sum_{k=m-1}^{n-1}\dbinom
{n-1}{k}p^{k}q^{n-k}+\underbrace{\dbinom{n-1}{n}}_{\substack{=0\\\text{(since
}n-1\geq0\text{ and }n-1<n\text{)}}}p^{n}q^{n-n}\\
& =\sum_{k=m-1}^{n-1}\dbinom{n-1}{k}p^{k}q^{n-k}.
\end{align*}
La comparación de estas dos igualdades, obtenemos
\begin{equation}
\sum_{k=m}^{n}\dbinom{n-1}{k}p^{k}q^{n-k}+\dbinom{n-1}{m-1}p^{m-1}q^{n-\left(
m-1\right) }=\sum_{k=m-1}^{n-1}\dbinom{n-1}{k}p^{k}q^{n-k}.
\end{equation}
Por lo tanto,
\begin{equation}
\sum_{k=m}^{n}\dbinom{n-1}{k}p^{k}q^{n-k}=\sum_{k=m-1}^{n-1}\dbinom{n-1}
{k}p^{k}q^{n-k}-\dbinom{n-1}{m-1}p^{m-1}q^{n-\left( m-1\right) }.
\end{equation}
Por lo tanto, \eqref{darij1.pf.l2.1} se convierte en
\begin{align*}
Q_{n,m} & =\sum_{k=m-1}^{n-1}\dbinom{n-1}{k}p^{k+1}q^{n-k-1}+\underbrace{\sum
_{k=m}^{n}\dbinom{n-1}{k}p^{k}q^{n-k}}_{=\sum_{k=m-1}^{n-1}\dbinom{n-1}
{k}p^{k}q^{n-k}-\dbinom{n-1}{m-1}p^{m-1}q^{n-\left( m-1\right) }}\\
& =\underbrace{\sum_{k=m-1}^{n-1}\dbinom{n-1}{k}p^{k+1}q^{n-k-1}+\sum
_{k=m-1}^{n-1}\dbinom{n-1}{k}p^{k}q^{n-k}}_{=\sum_{k=m-1}^{n-1}\dbinom{n-1}
{k}\left( p^{k+1}q^{n-k-1}+p^{k}q^{n-k}\right) }-\dbinom{n-1}{m-1}
p^{m-1}\underbrace{q^{n-\left( m-1\right) }}_{=q^{n-m+1}}\\
& =\sum_{k=m-1}^{n-1}\dbinom{n-1}{k}\left( \underbrace{p^{k+1}}_{=pp^{k}
}q^{n-k-1}+p^{k}\underbrace{q^{n-k}}_{=qq^{n-k-1}}\right) -\dbinom{n-1}
{m-1}p^{m-1}q^{n-m+1}\\
& =\sum_{k=m-1}^{n-1}\dbinom{n-1}{k}\underbrace{\left( pp^{k}q^{n-k-1}
+p^{k}qq^{n-k-1}\right) }_{\substack{=\left( p+q\right) p^{k}
q^{n-k-1}=p^{k}q^{n-k-1}\\\text{(since }p+q=1\text{)}}}-\dbinom{n-1}
{m-1}p^{m-1}q^{n-m+1}\\
& =\underbrace{\sum_{k=m-1}^{n-1}\dbinom{n-1}{k}p^{k}q^{n-k-1}}
_{\substack{=Q_{n-1,m-1}\\\text{(by \eqref{darij1.pf.l2.0})}}}-\dbinom
{n-1}{m-1}p^{m-1}q^{n-m+1}\\
& =Q_{n-1,m-1}-\dbinom{n-1}{m-1}p^{m-1}q^{n-m+1}.
\end{align*}
Esto demuestra Lema 2. $\blacksquare$
La prueba del Teorema 1. Tenemos $\left( 1-q-pq\right) -p^{2}=-\left(
p+1\right) \underbrace{\left( p+q-1\right) }_{\substack{=0\\\text{(desde
}p+q=1\text{)}}}=0$, thus $1-q-pq=p^{2}$.
Lema 2 (aplicado a $2n+2$ e $n+2$ en lugar de $n$ e $m$) de los rendimientos de
\begin{align}
Q_{2n+2,n+2} & =\underbrace{Q_{2n+1,n+1}}_{\substack{=Q_{2n,n}-\dbinom{2n}
{n}p^{n}q^{\left( 2n+1\right) -\left( n+1\right) +1}\\\text{(by Lemma 2,
applied to }2n+1\text{ and }n+1\\\text{instead of }n\text{ and }m\text{)}
}}-\underbrace{\dbinom{2n+1}{n+1}}_{\substack{=\dbinom{2n}{n}+\dbinom{2n}
{n+1}\\\text{(by the recurrence of the binomial coefficients)}}}p^{n+1}
\underbrace{q^{\left( 2n+2\right) -\left( n+2\right) +1}}_{=q^{n+1}
}\nonumber\\
& =Q_{2n,n}-\dbinom{2n}{n}p^{n}\underbrace{q^{\left( 2n+1\right) -\left(
n+1\right) +1}}_{=q^{n+1}}-\underbrace{\left( \dbinom{2n}{n}+\dbinom
{2n}{n+1}\right) p^{n+1}q^{n+1}}_{=\dbinom{2n}{n}p^{n+1}q^{n+1}+\dbinom
{2n}{n+1}p^{n+1}q^{n+1}}\nonumber\\
& =Q_{2n,n}-\dbinom{2n}{n}p^{n}q^{n+1}-\left( \dbinom{2n}{n}p^{n+1}
q^{n+1}+\dbinom{2n}{n+1}p^{n+1}q^{n+1}\right) \nonumber\\
& =Q_{2n,n}-\dbinom{2n}{n}p^{n}q^{n+1}-\dbinom{2n}{n}p^{n+1}q^{n+1}
-\dbinom{2n}{n+1}p^{n+1}q^{n+1}.
\label{darij1.pf.t1.1}
\tag{3}
\end{align}
Pero la definición de $Q_{2n,n+1}$ rendimientos $Q_{2n,n+1}=\sum_{k=n+1}^{2n}
\dbinom{2n}{k}p^{k}p^{2n-k}$. Meanwhile, the definition of $Q_{2n,n}$rendimientos
\begin{align*}
Q_{2n,n} & =\sum_{k=n}^{2n}\dbinom{2n}{k}p^{k}q^{2n-k}=\underbrace{\sum
_{k=n+1}^{2n}\dbinom{2n}{k}p^{k}q^{2n-k}}_{=Q_{2n,n+1}}+\dbinom{2n}{n}
p^{n}\underbrace{q^{2n-n}}_{=q^{n}}\\
& =Q_{2n,n+1}+\dbinom{2n}{n}p^{n}q^{n}.
\end{align*}
Por lo tanto,
\eqref{darij1.pf.t1.1} se convierte en
\begin{align*}
Q_{2n+2,n+2} & =\underbrace{Q_{2n,n}}_{=Q_{2n,n+1}+\dbinom{2n}{n}p^{n}q^{n}
}-\dbinom{2n}{n}p^{n}q^{n+1}-\dbinom{2n}{n}p^{n+1}q^{n+1}-\dbinom{2n}
{n+1}p^{n+1}q^{n+1}\\
& =Q_{2n,n+1}+\dbinom{2n}{n}p^{n}q^{n}-\dbinom{2n}{n}p^{n}q^{n+1}-\dbinom
{2n}{n}p^{n+1}q^{n+1}-\dbinom{2n}{n+1}p^{n+1}q^{n+1}\\
& =Q_{2n,n+1}+\dbinom{2n}{n}\underbrace{\left( p^{n}q^{n}-p^{n}
q^{n+1}-p^{n+1}q^{n+1}\right) }_{=\left( 1-q-pq\right) p^{n}q^{n}}
-\dbinom{2n}{n+1}p^{n+1}q^{n+1}\\
& =Q_{2n,n+1}+\dbinom{2n}{n}\underbrace{\left( 1-q-pq\right) }_{=p^{2}}
p^{n}q^{n}-\dbinom{2n}{n+1}p^{n+1}q^{n+1}\\
& =Q_{2n,n+1}+\dbinom{2n}{n}\underbrace{p^{2}p^{n}}_{=p^{n+2}}q^{n}
-\dbinom{2n}{n+1}p^{n+1}q^{n+1}\\
& =Q_{2n,n+1}+\dbinom{2n}{n}p^{n+2}q^{n}-\dbinom{2n}{n+1}p^{n+1}q^{n+1}.
\end{align*}
Esto demuestra el Teorema 1. $\blacksquare$