Tenga en cuenta que
$$ \left(2\sin\left(\sqrt{x}\right)+\sqrt{x}\sin\left(\frac{1}{x}\right)\right)^x=e^{x\log \left(2\sin\left(\sqrt{x}\right)+\sqrt{x}\sin\left(\frac{1}{x}\right)\right) }\to1$$
En efecto,
$$x\log \left(2\sin\left(\sqrt{x}\right)+\sqrt{x}\sin\left(\frac{1}{x}\right)\right)\to0 $$
desde
$$x\log \left(2\sin\left(\sqrt{x}\right)+\sqrt{x}\sin\left(\frac{1}{x}\right)\right)=x \left[\log \sqrt{x} +\log\left(2\frac{\sin\left(\sqrt{x}\right)}{\sqrt{x}}+\sin\left(\frac{1}{x}\right)\right)\right]=\sqrt{x} \left[ \sqrt{x} \log \sqrt{x} + \sqrt{x} \log\left(2\frac{\sin\left(\sqrt{x}\right)}{\sqrt{x}}+\sin\left(\frac{1}{x}\right)\right)\right]\to0\cdot(0+0)=0$$
0 votos
Por favor, si te parece bien, puedes aceptar la respuesta y ponerla como resuelta. Gracias.