Dejemos que $t = \tan\phi$ , $v = u\cos^2\phi$ y abreviar $\,_2F_1\left(1,\Delta +3;5/2;\cos^2(\alpha)x\right)$ como $F(x)$ podemos reescribir el integral $\mathscr{I}$ como $$\begin{align} \mathscr{I} = &-\int_0^{2\pi}\frac{d\phi}{\cos^2\phi}\int_0^{\cos^2\phi} dv\,(1-v)F(1-v)\\ = & -4\int_0^{\pi/2}\frac{d\phi}{\cos^2\phi}\int_0^{\cos^2\phi} dv\,(1-v)F(1-v)\\ = & -4\int_0^{\infty} dt \int_0^{\frac{1}{1+t^2}} dv\,(1-v)F(1-v)\\ = & -4\int_0^1 dv \int_0^{\sqrt{\frac{1}{v}-1}} dt\,(1-v)F(1-v)\\ = & -4\int_0^1 (1-v)^{3/2} v^{-\frac12} F(1-v) dv \end{align}$$ Dejemos que $(x)_k$ sea el aumento Símbolo del martillo pilón $x(x+1)\cdots(x+k-1)$ . Podemos ampliar
$$F(x) \quad\text{ as }\quad \sum_{k=0}^{\infty} \alpha_k x^k \quad\text{ where }\quad \alpha_k = \frac{(1)_k(\Delta+3)_k}{(\frac52)_k k!} \cos^{2k}(\alpha)$$
Si integramos esta expansión de $F(x)$ término por término, obtenemos
$$\begin{align} \mathscr{I} = & -4 \sum_{k=0}^{\infty} \alpha_k \int_0^1 (1-v)^{k+\frac32}v^{-\frac12} dv\\ = & -4 \sum_{k=0}^{\infty} \alpha_k \frac{\Gamma(k+\frac52)\Gamma(\frac12)}{\Gamma(k+3)}\\ = & -\frac{3\pi}{2} \sum_{k=0}^{\infty} \alpha_k \frac{(\frac52)_k}{(3)_k}\\ = & -\frac{3\pi}{2} \sum_{k=0}^{\infty} \frac{(1)_k(\Delta+3)_k}{(3)_k k!} \cos^{2k}(\alpha)\\ = & -\frac{3\pi}{2} \!\,_2F_1(1,\Delta+3;\,3;\,\cos^2(\alpha))\\ = & -\frac{3\pi}{(\Delta+1)(\Delta+2)\cos^4(\alpha)} \left[ \frac{1}{\sin^{2(\Delta+1)}(\alpha)} - 1 - (\Delta+1)\cos^2(\alpha) \right] \end{align}$$