$Y^2 = \sum X_i^2$ es invariante bajo rotaciones. Por lo tanto, $(X_1/Y, \ldots, X_n/Y)$ es distribuido uniformemente sobre la unidad de la esfera. En consecuencia, la distribución de cualquier combinación lineal
$$a_1 X_1 + a_2 X_2 + \cdots + a_n X_n = a Y \left(\frac{a_1}{a}\frac{X_1}{Y} + \cdots + \frac{a_n}{a}\frac{X_n}{Y}\right) = a Y Z,$$
with $a^2 = a_1^2 + a_2^2 + \cdots + a_n^2$, is the same as the distribution of any other linear combination with the same value of $aY$. For convenience, take $a_1=a_2=\cdots=a_{n-1}=0$ and $a_n=1$. To find the distribution of $Z$, we must therefore study the distribution of $X_n$ given that $(X_1,\ldots, X_n)$ lies on the unit sphere $S^{n-1}$ in $\mathbb{R}^n$.
The density between $X_n = h$ and $X_n = h+dh$ will be proportional to the volume of the infinitesimal band on $S^{n-1}$ between heights $h$ and $h+dh$. This band is a frustum of a circular cone with radii ranging from $(1-h^2)^{1/2}$ to $(1 - (h+dh)^2)^{1/2}$. It therefore has an $n-1$-dimensional content proportional to
$$f(h) = \frac{dh}{(1-h^2)^{1/2}}((1-h^2)^{1/2})^{n-2} + O(dh^2).$$
This is recognizable as a Beta$((n-1)/2, (n-1)/2)$ density that has been recentered at $0$ and scaled to be supported on $[-1,1]$. Consequently, $\suma X_i$ itself is $aY$ times that distribution.
Simulations in R
bear out this result. For each of several values of $n$, a vector $un$ was randomly generated and then $10,000$ independent realizations of $\sum_{i=1}^n a_i X_i$ were created. For each of these, $Z$ se calcula y se resume con un histograma. A través de estos histogramas se extraen las reivindica la función de densidad (de la reescalado, recentered distribución Beta). El acuerdo es excelente.
N <- 1e4
par(mfcol=c(3, 4))
for (n in c(2, 3, 5, 10)) {
for (i in 1:3) {
a <- rnorm(n)
x <- matrix(rnorm(n*N), n, N)
y <- apply(x, 2, function(y) sqrt(sum(y^2)))
z <- ((a / sqrt(sum(a^2))) %*% x) / y
hist(z, freq=FALSE, breaks=seq(-1,1,length.out=41), main=paste("n =", n))
curve((1-x^2)^((n-3)/2)/(2^(n-2) * beta((n-1)/2, (n-1)/2)), col="Red", lwd=2, add=TRUE)
}
}