En IRT paquetes de software y en la literatura es común para calcular el BIC como
$$ \mathrm{BIC} = -2 \cdot \mathrm{logLik} + \log(N)\mathrm{Npars} $$
where $N$ is the number of rows in wide format (i.e. the number of persons) and $\mathrm{Npars}$ is the number of parameters. This is for example the way the R-packages ltm
and TAM
implement the BIC.
Typically IRT data is supplied in wide format, with one row per person and $I$ columns per item. If IRT data is reshaped to long format, it seems more natural to use $\log(N\cdot I)$ as a weight in the BIC criterion instead of $\log(N)$.
This is the perspective of generalized linear mixed models. In fact this is the output of the BIC method in lme4
if glmer
is used to fit the Rasch model, as for example DeBoeck et al. (2011) illustrate in their JSS article on the estimation of IRT Models with glmer
.
Clearly it could make a difference which weight is chosen, as the difference in BIC values is multiplied/divided by the factor $\log(N\cdot I)/\log(N)$. Hay un conserve su autoridad de origen o de algún tipo de argumento en favor de uno de los pesos?