$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin {align} \mrm {F} \pars {n} & \equiv \int_ {0}^{ \infty }{ \dd x \over \pars {x + \root {1 + x^{2}}^{{2n}}, {1 \over 1+x^2} \\ [5mm] & \stackrel {x\ =\ \pars {1/t - t}/2}{=}\N-, \N-, \N-, 2 \int_ {0}^{1}{t^{2n} \over 1 + t^{2}}\, \dd t \\ [5mm] & = 2 \int_ {0}^{1}{t^{2n} - t^{2n + 2} \over 1 - t^{4}}\, \dd t = {1 \over 2} \int_ {0}^{1}{t^{n/2 - 3/4} - t^{n/2 -1/4} \over 1 - t}\, \dd t \\ [5mm] & = {1 \over 2} \bracks {% \int_ {0}^{1}{1 - t^{n/2 -1/4} \over 1 - t}\, \dd t - \int_ {0}^{1}{1 - t^{n/2 -3/4} \over 1 - t}\, \dd t} \\ [5mm] & = \bbx {{1 \over 2} \bracks { \Psi\pars {{n \over 2} + {3 \over 4}} - \Psi\pars {{n \over 2} + {1 \over 4}}}} \end {align}
donde $\ds{\Psi}$ es el Función Digamma .
Tenga en cuenta que un recidiva inducida es proporcionada por la Fórmula de Recurrencia Digamma $\ds{\Psi\pars{z + 1} = \Psi\pars{z} + {1 \over z}}$ .
0 votos
El método de los residuos siempre garantiza el éxito.
1 votos
¡Prueba los sustitutos hiperbólicos!