4 votos

Encuentra todas las soluciones naturales de (a+b+c)a-3bc=0

Estaba intentando resolver un rompecabezas de geometría cuando me encontré con un sencillo problema algebraico que no pude resolver.

Dada la expresión $(a+b+c)a - 3bc = 0$ encontrar todas las soluciones naturales para $a$ , $b$ y $c$ .

He tratado de aislar una variable, como $$a=\frac{-b-c\pm\sqrt{b^2+14bc +c^2}}{2}$$ pero no llegué a ninguna parte. A pesar de esto, he notado que los números $(2, 6, 1)$ satisfacen la condición. ¿Alguien puede ayudar con este modelo de problema?

3voto

Stephan Aßmus Puntos 16

La mayoría de las soluciones tienen $a=b=c.$ Sin embargo, muchos otros. Además, dada la solución $$ (a,b,c),$$ $$ (a,c,b) $$ es otra solución, que parece distinta en cuanto a mis cuatro recetas. Los dos pedidos aparecerán, normalmente un pedido con $|x| + |y|$ bastante pequeño, pero el otro orden con $|x| + |y|$ más grande.

En estos CUATRO recetas, toma $\gcd(x,y) = 1,$ y si $a < 0$ o si $\gcd(a,b,c) \neq 1,$ descartar ese triple. $$ \mbox{I:} \; \; \; a = 3 xy, \; \; b = xy + 2 y^2, \; \; c = 2 x^2 + xy $$ $$ \mbox{II:} \; \; \; a = 2 x^2 + xy - y^2, \; \; b = 2 x^2 -xy , \; \; c = 2 x^2 + 3xy + y^2 $$ $$ \mbox{III:} \; \; \; a = 3 x^2 -3 xy, \; \; b = 5 x^2 -xy , \; \; c = 2 x^2 - 3xy + y^2 $$ $$ \mbox{IV:} \; \; \; a = 7 x^2 -3 xy , \; \; b = 35 x^2 -29xy + 6 y^2 , \; \; c = 3 x^2 - xy $$

El resultado del método Fricke-Klein es que sólo tiene que haber un conjunto finito de tales recetas. Se puede tomar sólo una receta si se está dispuesto a dividirla por $\gcd(a,b,c),$ pero entonces no se sabe de qué tamaño son las variables.

Todo coprimo positivo soluciones que no sean $1,1,1,$ con $a \leq 100$

  2      6      1
  3      5      2
  5     10      3
  5     35      2
  7     35      3
  8     88      3
  9     12      7
  9     21      5
  9     39      4
 11     44      5
 12     68      5
 14     21     10
 15     55      7
 18     22     15
 20     28     15
 21     56     11
 26     65     14
 27     90     13
 30     35     26
 35     45     28
 35     77     20
 36     76     21
 44     55     36
 45     51     40
 45     65     33
 54     99     34
 55     99     35
 63     70     57
 65     78     55
 77     91     66
 84     92     77

\=========================================

utilizando las cuatro recetas

  2      1      6     I I        1      1
  3      5      2  I I  I        1      0
  5     10      3     I I        2     -1
  5      2     35     I I        2      3
  7      3     35  I  V        7     16
  7     35      3  I  V        1      0
  8      3     88     I I        3      5
  9     21      5     I        1      3
  9     39      4  I I  I        3      2
  9      5     21     I        3      1
  9      7     12  I I  I        1     -2
 11     44      5     I I        4     -3
 12     68      5  I I  I        4      3
 14     21     10     I I        3     -1
 15     55      7     I        1      5
 15      7     55     I        5      1
 18     22     15  I I  I        2     -1
 20     15     28     I I        3      1
 21     11     56  I I  I        1     -6
 26     65     14     I I        5     -3
 27     13     90  I I  I        1     -8
 30     26     35  I I  I        2     -3
 35     20     77     I I        4      3
 35     28     45     I I        4      1
 36     76     21  I I  I        4      1
 44     55     36     I I        5     -1
 45     33     65     I        5      3
 45     51     40  I I  I        3     -2
 45     65     33     I        3      5
 54     34     99  I I  I        2     -7
 55     35     99  I  V       11     24
 55     99     35  I  V        5      8
 63     57     70  I I  I        3     -4
 65     78     55     I I        6     -1
 77     66     91     I I        6      1
 84     92     77  I I  I        4     -3

\============================

1voto

JSX Puntos 62

Reescribe la ecuación como $(a+b)(a+c)=4bc$ . Ahora \begin{eqnarray*} a+b= 2 \alpha \beta \\ a+c = 2 \gamma \delta \\ b= \alpha \gamma \\ c= \beta \delta \end{eqnarray*} lo satisfará siempre que $ \alpha ( 2 \beta - \gamma)=a= \delta(2 \gamma - \beta)$ . Así que elige \begin{eqnarray*} \alpha=2 \gamma - \beta \\ \delta= 2 \beta - \gamma \end{eqnarray*} y así tenemos faimily de soluciones generadas por \begin{eqnarray*} a= (2 \gamma - \beta)( 2 \beta - \gamma) \\ b= \gamma (2 \gamma - \beta)\\ c= \beta ( 2 \beta - \gamma).\\ \end{eqnarray*}

1voto

Lissome Puntos 31

$$c=\frac{a^2+ab}{3b-a}$$

El problema es entonces: para qué $a,b$ ¿tenemos $3b-a|a(a+b)$ .

Dejemos que $d= gcd(a,b)$ puis $a=da', b=db'$ con $gcd(a',b')=1$ . Entonces

$$3b'-a'|da'(a'+b')$$

Ahora, observemos que $$gcd(3b'-a', a')|3gcd(a',b')=3$$ y $$gcd(3b'-a', a'+b')|4gcd(a',b')=4 \,.$$

En este punto el problema se reduce a 6 casos, y un análisis caso por caso completará el problema: $$gcd(3b'-a', a') \in \{1,3\} \, \mbox{ and } \, gcd(3b'-a', a'+b') \in \{ 1,2,4\}$$

Pero también se puede escribir la solución general de esta manera: Elige $a',b'$ arbitraria. Sea $$d=\frac{3b'-a'}{gcd(3b'-a', a')gcd(3b'-a', a'+b')} \cdot l$$ para algún número entero $l$ .

Entonces $$a=da'=\frac{3b'-a'}{gcd(3b'-a', a')gcd(3b'-a', a'+b')} \cdot la' , \\ b=\frac{3b'-a'}{gcd(3b'-a', a')gcd(3b'-a', a'+b')} \cdot l b', \\ c=\frac{a^2+ab}{3b-a}= \frac{a'(a'+b')}{gcd(3b'-a', a')gcd(3b'-a', a'+b')} \cdot l$$ es una solución, y esto describe la solución general.

1voto

Stephan Aßmus Puntos 16

Es posible que esto le guste más, ya que está resolviendo su $$ w = \sqrt {b^2 + 14 bc + c^2} $$ un número entero.

Tomamos $x \geq 0,$ $\gcd(x,y) = 1,$ y sólo estas dos recetas: $$ \mbox{I:} \; \; w = |11 x^2 + 2 xy - y^2|, \; \; \; b = 6 x^2 + 5xy + y^2, \; \; \; c = x^2 - xy,$$

$$ \mbox{II:} \; \; w = |44 x^2 + 20 xy + 2 y^2|, \; \; \; b = 21 x^2 + 13xy + 2y^2, \; \; \; c = 5x^2 + xy,$$ y descartar los triples cuando $b < 0$ o $c < 0$ o $\gcd(w,b,c) \neq 1.$

\=====================================

  w      b      c               x      y
  1      1      0     I         0      1
  4      1      1    I I        1     -4
 11      6      1     I         1      0
 13      2      5     I         1     -4
 23      3     10     I         2     -3
 37     12      7     I         1     -6
 44     21      5    I I        1      0
 44      5     21    I I        3     -8
 47     35      2     I         2      1
 52      3     35    I I        5    -18
 52     35      3    I I        3    -14
 59     10     21     I         3     -4
 61      4     39     I         3    -10
 71      5     44     I         4     -7
 73     15     22     I         2     -9
 83     28     15     I         3     -2
 92     55      7    I I        1      2
 92      7     55    I I        5    -14
 97      5     68     I         4    -13
107     88      3     I         3      2
109     56     11     I         1    -10
121     35     26     I         2    -11
131     14     65     I         5     -8
143     45     28     I         4     -3
143      7    102     I         6    -11
148    117      5    I I        5    -24
148      5    117    I I        9    -32
157     90     13     I         1    -12
167     77     20     I         4     -1
169     21     76     I         4    -15
179     36     55     I         5     -6
181     40     51     I         3    -14
188     33     65    I I        5    -12
188     65     33    I I        3     -4
191    165      4     I         4      3
193      7    150     I         6    -19
227     18    133     I         7    -12
229     24    115     I         5    -18
236     11    171    I I        9    -26
236    171     11    I I        1      6
239      9    184     I         8    -15
241     99     34     I         2    -15
244     35     99    I I        9    -34
244     99     35    I I        7    -30
251    104     35     I         5     -2
253     70     57     I         3    -16
253      8    203     I         7    -22
263     55     78     I         6     -7
277    182     17     I         1    -16
284    119     39    I I        3     -2
284     39    119    I I        7    -18
292    247      7    I I        7    -34
292      7    247    I I       13    -46
299    266      5     I         5      4
299     44    119     I         7    -10
311     91     66     I         6     -5
313    143     38     I         2    -17
332     13    253    I I       11    -32
332    253     13    I I        1      8
337     77     92     I         4    -19
347     22    225     I         9    -16
349    240     19     I         1    -18

\=====================================

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X