11 votos

¿Cómo evaluar...

Cómo evaluar $$\int_{0}^{1}\frac{\arctan x}{x} \log{\left(\frac{1+ x}{\sqrt{1+x^2}}\right)}\mathrm dx$ $

Intenté integrarme por partes, pero de ninguna manera hasta ahora, ayúdame, gracias.

6voto

Zacky Puntos 162

A partir de aquí tenemos que $$\frac12 \int_0^1 \frac{\arctan x \ln(1+x^2)}{x} dx =\frac13 \int_0^1 \frac{\arctan x \ln(1+x)}{x}dx$$ $$\Rightarrow I=\int_{0}^{1}\frac{\arctan x}{x} \ln{\left(\frac{1+ x}{\sqrt{1+x^2}}\right)} dx=\frac23 \int_{0}^{1}\frac{\arctan x \ln(1+x)}{x} dx$$ Me he encontrado con esta integral también el año pasado y le pidió que en AoPS, usted puede tomar un vistazo a Knas solución a partir de allí, dando: $$I=\begin{align}2\Im\left(\text{Li}_3\left(\frac{1+i}{2}\right)\right)+\text{G}\ln 2-\frac{3}{64}\pi^3-\frac{1}{16}\pi\ln^2 2\end{align}$$

1voto

Ali Shather Puntos 836

enfoque diferente a evaluar $\displaystyle\int_0^1 \frac{\arctan x\ln(1+x)}{x}\ dx$ :

a partir de aquí , tenemos $\displaystyle\int_0^1\frac{\arctan x\ln(1+x^2)}{x}\ dx-2\int_0^1\frac{\arctan x\ln(1-x)}{x}\ dx=\frac{\pi^3}{16}\tag{1}$

y a partir de aquí , tenemos $\displaystyle \ 3\int_0^1\frac{\arctan x\ln(1+x^2)}{x}\ dx-2\int_0^1\frac{\arctan x\ln(1+x)}{x}\ dx=0\tag{2}$

de $(1)$ e $(2)$, obtenemos $\displaystyle\int_0^1\frac{\arctan x\ln(1+x)}{x}\ dx=3\int_0^1\frac{\arctan x\ln(1-x)}{x}\ dx+\frac{3\pi^3}{32}\tag{3}$

tenemos \begin{align} \int_0^1 \frac{\arctan x\ln(1-x)}{x}\ dx&=\sum_{n=0}^\infty\frac{(-1)^n}{2n+1}\int_0^1 x^{2n}\ln(1-x)\ dx\\ &=-\sum_{n=0}^\infty\frac{(-1)^nH_{2n+1}}{(2n+1)^2}=-\text{Im}\sum_{n=1}^\infty\frac{i^nH_n}{n^2}\\ \end{align} y el uso de la generación de la función de con $\ x=i$ $$\sum_{n=1}^\infty\frac{x^nH_n}{n^2}=\operatorname{Li}_3(x)-\operatorname{Li}_3(1-x)+\ln(1-x)\operatorname{Li}_2(1-x)+\frac12\ln x\ln^2(1-x)+\zeta(3)$$ llegamos $\ \displaystyle\int_0^1 \frac{\arctan x\ln(1-x)}{x}\ dx=\frac{\pi}{16}\ln^22+\frac12G\ln2+\text{Im}\operatorname{Li}_3(1-i)\tag{4}$

conectar $(4)$ en $(3)$, obtenemos $$\int_0^1 \frac{\arctan x\ln(1+x)}{x}\ dx=\frac{3\pi^3}{32}+\frac{3\pi}{16}\ln^22+\frac32G\ln2+3\text{Im}\operatorname{Li}_3(1-i)$$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X