$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$ $\ds{{n \choose k} = {n - 2 \choose k} + 2{n - 2 \choose k - 1} +{n - 2 \choose k - 2}:\ {\large ?}}$ .
\begin{align}&\color{#66f}{\large% {n - 2 \choose k} + 2{n - 2 \choose k - 1} + {n - 2 \choose k - 2}} \\[3mm]&=\oint_{\verts{z}\ =\ 1}\bracks{% {\pars{1 + z}^{n - 2} \over z^{k + 1}} +2\,{\pars{1 + z}^{n - 2} \over z^{k}} +{\pars{1 + z}^{n - 2} \over z^{k - 1}}}\,{\dd z \over 2\pi\ic} \\[3mm]&=\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{n - 2} \over z^{k + 1}} \pars{1 + 2z + z^{2}}\,{\dd z \over 2\pi\ic} \\[3mm]&=\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{n} \over z^{k + 1}} \,{\dd z \over 2\pi\ic} = \color{#66f}{\large{n \choose k}} \end{align}