Asumir $b\neq0$ , $c\neq0$ y $b+c\neq0$ para mantener la clave del significado de la pregunta.
$\int_d^e\exp\left(-a\left((b+c)\cos x-\sqrt{b^2-(b+c)^2\sin^2x}\right)^2 \right)~dx$
$=\int_d^e\sum\limits_{n=0}^\infty\dfrac{(-1)^na^n\left((b+c)\cos x-\sqrt{b^2-(b+c)^2\sin^2x}\right)^{2n}}{n!}dx$
$=\int_d^e\sum\limits_{n=0}^\infty\sum\limits_{m=0}^n\dfrac{(-1)^nC_{2m}^{2n}a^n(b+c)^{2n-2m}\cos^{2n-2m}x\left(\sqrt{b^2-(b+c)^2\sin^2x}\right)^{2m}}{n!}dx-\int_d^e\sum\limits_{n=0}^\infty\sum\limits_{m=1}^n\dfrac{(-1)^nC_{2m-1}^{2n}a^n(b+c)^{2n-2m+1}\cos^{2n-2m+1}x\left(\sqrt{b^2-(b+c)^2\sin^2x}\right)^{2m-1}}{n!}dx$
$=\int_d^e\sum\limits_{n=0}^\infty\sum\limits_{m=0}^n\dfrac{(-1)^n(2n)!a^n(b+c)^{2n-2m}\cos^{2n-2m}x\left(b^2-(b+c)^2+(b+c)^2\cos^2x\right)^m}{n!(2m)!(2n-2m)!}dx-\int_d^e\sum\limits_{n=0}^\infty\sum\limits_{m=1}^n\dfrac{(-1)^n(2n)!a^n(b+c)^{2n-2m+1}\cos^{2n-2m+1}x\left(b^2-(b+c)^2\sin^2x\right)^{m-\frac{1}{2}}}{n!(2m-1)!(2n-2m+1)!}dx$
Tenga en cuenta que tanto $\int\cos^{2n-2m}x\left(b^2-(b+c)^2+(b+c)^2\cos^2x\right)^m~dx$ e $\int\cos^{2n-2m+1}x\left(b^2-(b+c)^2\sin^2x\right)^{m-\frac{1}{2}}~dx$ donde $m$ e $n$ son cualquier enteros no negativos a tener cerca de-forma.