La segunda derivada de la función beta da $\ \displaystyle \int_0^1x^{n-1}\ln^2(1-x)\ dx=\frac{H_n^2}{n}+\frac{H_n^{(2)}}{n}$
dividir ambos lados por $\ n2^n$ y tomar la suma, se obtiene
\begin{align}
\sum_{n=1}^\infty\frac{H_n^2}{n^22^n}+\sum_{n=1}^\infty\frac{H_n^{(2)}}{n^22^n}&=\int_0^1\frac{\ln^2(1-x)}{x}\sum_{n=1}^\infty\frac{(x/2)^n}{n} dx=-\int_0^1\frac{\ln^2(1-x)\ln(1-x/2)}{x} dx\\
&=-\int_0^1\frac{\ln^2(1-x)\left[\ln(2-x)-\ln2\right]}{x}\ dx, \quad 1-x=y\\
&=\ln2\int_0^1\frac{\ln^2x}{1-x} dx-\int_0^1\frac{\ln^2x\ln(1+x)}{1-x}\ dx\\
&=2\ln2\zeta(3)+\sum_{n=1}^\infty\frac{(-1)^n}{n}\int_0^1\frac{x^n\ln^2x}{1-x}\ dx\\
&=2\ln2\zeta(3)+\sum_{n=1}^\infty\frac{(-1)^n}{n}\left(2\zeta(3)-2H_n^{(3)}\right)\\
&=2\ln2\zeta(3)-2\ln2\zeta(3)-2\sum_{n=1}^\infty\frac{(-1)^nH_n^{(3)}}{n}\\
&=-2\sum_{n=1}^\infty\frac{(-1)^nH_n^{(3)}}{n}
\end{align}
a continuación, $$\sum_{n=1}^\infty\frac{H_n^2}{n^22^n}=-\sum_{n=1}^\infty\frac{H_n^{(2)}}{n^22^n}-2\sum_{n=1}^\infty\frac{(-1)^nH_n^{(3)}}{n}$$
la primera suma se puede encontrar aquí, en cuanto a la segunda, puede ser calculada de la siguiente manera:
el uso de la generación de la función de $\displaystyle\sum_{n=1}^\infty z^nH_n^{(3)}=\frac{\operatorname{Li}_3(z)}{1-z}$, divide ambos lados por $z$ e integrar de $z=0$ a $x$,
a continuación, $\quad\displaystyle\sum_{n=1}^\infty\frac{x^nH_n^{(3)}}{n}=\operatorname{Li}_4(x)-\ln(1-x)\operatorname{Li}_3(x)-\frac12\operatorname{Li}_2^2(x)\ $ y tomando a $x=-1$, obtenemos
$$\sum_{n=1}^\infty\frac{(-1)^nH_n^{(3)}}{n}=\frac34\ln2\zeta(3)-\frac{19}{16}\zeta(4)$$
el taponamiento de las formas cerradas de estas dos cantidades, obtenemos
$$\sum_{n=1}^\infty\frac{H_n^2}{n^22^n}=-\frac1{24}\ln^42+\frac14\ln^22\zeta(2)-\frac74\ln2\zeta(3)+\frac{37}{16}\zeta(4)-\operatorname{Li}_4\left(\frac12\right)$$