Si $n>4$, luego $(n!)^k \equiv 0\mod{10}$ $\implies$ el último dígito es un $0$.
Para ver esto, observe desde $n>4$, $n!=(n)(n-1)\cdot\cdot\cdot(5)(4)(3)(2)(1)$. Podemos reescribir esto como: $$10\cdot[(n)(n-1)\cdot\cdot\cdot(4)(3)(1)]$$ Now our modulo definition states that since 10 is a factor of $n!$, taking its mod will yield a zero remainder ($\existe h\en \{1,2,3...\}$ s.t. $h=\frac{n!}{10}=\frac{10\cdot[(n)(n-1)\cdot\cdot\cdot(4)(3)(1)]}{10}=[(n)(n-1)\cdot\cdot\cdot(4)(3)(1)]$ which is natural number since the naturals are closed under addition and multiplication). Thus, we have proven $n!$'s congruence to $0\mod10$. Ahora simplemente nos tenga en cuenta la siguiente identidad:
Si $a\equiv b\mod{m}$,, a continuación,$a^q\equiv b^q\mod{m}$.