Una pista:
$v(v'''+3v''+52v'+50v)+4(v'''+3v''+52v'+100v)=0$ con $v(0)=v'(0)=v''(0)=1$
$(v+4)(v'''+3v''+52v'+50v)+200v=0$ con $v(0)=v'(0)=v''(0)=1$
Dejemos que $u=v+4$ ,
Entonces $u(u'''+3u''+52u'+50(u-4))+200(u-4)=0$ con $u(0)=5$ , $u'(0)=u''(0)=1$
$u(u'''+3u''+52u'+50u)-800=0$ con $u(0)=5$ , $u'(0)=u''(0)=1$
$u'''+3u''+52u'+50u-\dfrac{800}{u}=0$ con $u(0)=5$ , $u'(0)=u''(0)=1$
Dejemos que $u=e^{-x}w$ ,
Entonces $u'=e^{-x}w'-e^{-x}w$
$u''=e^{-x}w''-e^{-x}w'-e^{-x}w'+e^{-x}w=e^{-x}w''-2e^{-x}w'+e^{-x}w$
$u'''=e^{-x}w'''-e^{-x}w''-2e^{-x}w''+2e^{-x}w'+e^{-x}w'-e^{-x}w=e^{-x}w'''-3e^{-x}w''+3e^{-x}w'-e^{-x}w$
$\therefore e^{-x}w'''-3e^{-x}w''+3e^{-x}w'-e^{-x}w+3e^{-x}w''-6e^{-x}w'+3e^{-x}w+52e^{-x}w'-52e^{-x}w+50e^{-x}w-\dfrac{800}{e^{-x}w}=0$ con $w(0)=5$ , $w'(0)=6$ , $w''(0)=18$
$e^{-x}w'''+49e^{-x}w'-\dfrac{800}{e^{-x}w}=0$ con $w(0)=5$ , $w'(0)=6$ , $w''(0)=18$
$ww'''+49ww'-800e^{2x}=0$ con $w(0)=5$ , $w'(0)=6$ , $w''(0)=18$
$\int ww'''~dx+49\int ww'~dx-800\int e^{2x}~dx=0$ con $w(0)=5$ , $w'(0)=6$ , $w''(0)=18$
$\int w~dw''+49\int w~dw-800\int e^{2x}~dx=0$ con $w(0)=5$ , $w'(0)=6$ , $w''(0)=18$
$ww''-\int w''~dw+49\int w~dw-800\int e^{2x}~dx=0$ con $w(0)=5$ , $w'(0)=6$ , $w''(0)=18$
$ww''-\int w'w''~dx+49\int w~dw-800\int e^{2x}~dx=0$ con $w(0)=5$ , $w'(0)=6$ , $w''(0)=18$
$ww''-\int w'~dw'+49\int w~dw-800\int e^{2x}~dx=0$ con $w(0)=5$ , $w'(0)=6$ , $w''(0)=18$
$ww''-\dfrac{(w')^2}{2}+\dfrac{49w^2}{2}-400e^{2x}=933$ con $w(0)=5$ , $w'(0)=6$
Dejemos que $w=z^2$ ,
Entonces $w'=2zz'$
$w''=2zz''+2(z')^2$
$\therefore2z^3z''+2z^2(z')^2-2z^2(z')^2+\dfrac{49z^4}{2}-400e^{2x}=933$ con $z(0)=\pm\sqrt5$ , $z'(0)=\pm\dfrac{3}{\sqrt5}$
$2z^3z''+\dfrac{49z^4}{2}=400e^{2x}+933$ con $z(0)=\pm\sqrt5$ , $z'(0)=\pm\dfrac{3}{\sqrt5}$
$z''+\dfrac{49z}{4}=\dfrac{400e^{2x}+933}{2z^3}$ con $z(0)=\pm\sqrt5$ , $z'(0)=\pm\dfrac{3}{\sqrt5}$