Un enfoque diferente
En primer lugar, definamos
$$M=\sum_{n=1}^\infty\frac{(-1)^nH_n^3}{n^2}$$
$$N=\sum_{n=1}^\infty\frac{(-1)^nH_nH_n^{(2)}}{n^2}$$
$$P=\sum_{n=1}^\infty\frac{(-1)^nH_n^{(3)}}{n^2}$$
Voy a establecer dos relaciones y a resolverlas como un sistema de ecuaciones.
Primera relación:
Desde aquí tenemos
$$-\int_0^1x^{n-1}\ln^3(1-x)\ dx=\frac{H_n^3+3H_nH_n^{(2)}+2H_n^{(3)}}{n}$$
Multiplica ambos lados por $\frac{(-1)^n}{n}$ entonces $\sum_{n=1}^\infty$ tenemos
$$M+3N+2P=\int_0^1\frac{\ln^3(1-x)}{x}\sum_{n=1}^\infty\frac{(-x)^{n-1}}{n}dx=\int_0^1\frac{\ln^3(1-x)\ln(1+x)}{x}dx\tag1$$
Segunda relación:
Desde aquí tenemos
$$\sum_{n=1}^\infty\left(H_n^3-3H_nH_n^{(2)}+2H_n^{(3)}\right)x^n=-\frac{\ln^3(1-x)}{1-x}$$
Sustituir $x$ con $-x$ y multiplicar ambos lados por $-\frac{\ln x}{x}$ entonces $\int_0^1$ y utilizar $-\int_0^1 x^{n-1}\ln xdx=\frac{1}{n^2}$ obtenemos
$$M-3N+2P=\int_0^1\frac{\ln^3(1+x)\ln x}{x(1+x)}dx\tag2$$
Así que
$$M=\frac{(1)+(2)}{2}=\frac12\color{blue}{\int_0^1\frac{\ln^3(1-x)\ln(1+x)}{x}dx}+\frac12\color{red}{\int_0^1\frac{\ln^3(1+x)\ln x}{x(1+x)}dx}-2P$$
la primera integral está bien calculada por @Song aquí
$$\color{blue}{\int_0^1\frac{\ln^3(1-x)\ln(1+x)}{x}dx}=6\operatorname{Li}_5\left(\frac12\right)+6\ln2\operatorname{Li}_4\left(\frac12\right)-\frac{81}{16}\zeta(5)-\frac{21}{8}\zeta(2)\zeta(3)\quad+\frac{21}8\ln^22\zeta(3)-\ln^32\zeta(2)+\frac15\ln^52$$
Para la segunda integral,
$$\color{red}{\int_0^1\frac{\ln^3(1+x)\ln x}{x(1+x)}dx}=\int_0^1\frac{\ln^3(1+x)\ln x}{x}dx-\underbrace{\int_0^1\frac{\ln^3(1+x)\ln x}{1+x}dx}_{IBP}$$
$$=\int_0^1\frac{\ln^3(1+x)\ln x}{x}dx+\frac14\int_0^1\frac{\ln^4(1+x)}{x}dx$$
donde la primera parte se calcula aquí
$$\int_0^1\frac{\ln^3(1+x)\ln x}{x}dx=-12\operatorname{Li}_5\left(\frac12\right)-12\ln2\operatorname{Li}_4\left(\frac12\right)+\frac{99}{16}\zeta(5)+3\zeta(2)\zeta(3)\\-\frac{21}4\ln^22\zeta(3)+2\ln^32\zeta(2)-\frac25\ln^52$$
y la segunda parte se puede calcular mediante la generalización
$$\int_0^1\frac{\ln^n(1+x)}{x}dx=\frac{\ln^{n+1}(2)}{n+1}+n!\zeta(n+1)+\sum_{k=0}^n k!{n\choose k}\ln^{n-k}(2)\operatorname{Li}_{k+1}\left(\frac12\right)$$
que da
$$\small{\int_0^1\frac{\ln^4(1+x)}{x}dx=4\ln^32\zeta(2)-\frac{21}2\ln^22\zeta(3)+24\zeta(5)-\frac45\ln^52-24\ln2\operatorname{Li}_4\left(\frac12\right)-24\operatorname{Li}_5\left(\frac12\right)}$$
combinando las dos partes tenemos
$$\color{red}{\int_0^1\frac{\ln^3(1+x)\ln x}{x(1+x)}dx}=-18\operatorname{Li}_5\left(\frac12\right)-18\ln2\operatorname{Li}_4\left(\frac12\right)+\frac{195}{16}\zeta(5)+3\zeta(2)\zeta(3)\\-\frac{63}8\ln^22\zeta(3)+3\ln^32\zeta(2)-\frac35\ln^52$$
Para la suma $P$ ya está calculado aquí
$$P=\sum_{n=1}^\infty\frac{(-1)^nH_n^{(3)}}{n^2}=\frac{21}{32}\zeta(5)-\frac34\zeta(2)\zeta(3)$$
Combinar los resultados de la integral azul, la integral roja y $P$ obtenemos
$$M=-6\operatorname{Li}_5\left(\frac12\right)-6\ln2\operatorname{Li}_4\left(\frac12\right)+\ln^32\zeta(2)-\frac{21}{8}\ln^22\zeta(3)+\frac{27}{16}\zeta(2)\zeta(3)+\frac94\zeta(5)-\frac15\ln^52$$
Y
$$N=\frac{(1)-(2)}{6}=\frac16\color{blue}{\int_0^1\frac{\ln^3(1-x)\ln(1+x)}{x}dx}-\frac16\color{red}{\int_0^1\frac{\ln^3(1+x)\ln x}{x(1+x)}dx}$$
$$=4\operatorname{Li}_5\left(\frac12\right)+4\ln2\operatorname{Li}_4\left(\frac12\right)-\frac23\ln^32\zeta(2)+\frac74\ln^22\zeta(3)-\frac{15}{16}\zeta(2)\zeta(3)-\frac{23}8\zeta(5)+\frac2{15}\ln^52$$