11 votos

Dos potentes sumas alternas $\sum_{n=1}^\infty\frac{(-1)^nH_nH_n^{(2)}}{n^2}$ y $\sum_{n=1}^\infty\frac{(-1)^nH_n^3}{n^2}$

Donde $H_n$ es el número armónico y se puede definir como

$H_n=1+\frac12+\frac13+...+\frac1n$

$H_n^{(2)}=1+\frac1{2^2}+\frac1{3^2}+...+\frac1{n^2}$

estas dos sumas ya están resueltas por Cornel utilizando la manipulación de la suma y también se pueden encontrar en su libro recién publicado " Integrales, sumas y series (casi) imposibles ".

Pude evaluarlos utilizando la integración y algunas identidades armónicas.

\begin{align} \sum_{n=1}^\infty\frac{(-1)^nH_nH_n^{(2)}}{n^2}&=4\operatorname{Li}_5\left(\frac12\right)+4\ln2\operatorname{Li}_4\left(\frac12\right)-\frac23\ln^32\zeta(2)+\frac74\ln^22\zeta(3)\\&\quad-\frac{15}{16}\zeta(2)\zeta(3)-\frac{23}8\zeta(5)+\frac2{15}\ln^52 \end{align} \begin{align} \sum_{n=1}^\infty\frac{(-1)^nH_n^3}{n^2}&=-6\operatorname{Li}_5\left(\frac12\right)-6\ln2\operatorname{Li}_4\left(\frac12\right)+\ln^32\zeta(2)-\frac{21}{8}\ln^22\zeta(3)\\&\quad+\frac{27}{16}\zeta(2)\zeta(3)+\frac94\zeta(5)-\frac15\ln^52 \end{align}

El objetivo de publicar estas dos sumas es utilizarlas como referencia en nuestras soluciones si es necesario.

9voto

Ali Shather Puntos 836

Para calcular estas dos sumas, vamos a establecer dos relaciones y resolverlas por eliminación.

Para establecer la primera relación, utilizamos $\displaystyle I=\int_0^1\frac{\ln^4(1+x)+6\ln^2(1-x)\ln^2(1+x)}{x}\ dx=\frac{21}4\zeta(5)\tag{1}$

que fue probado por Khalef Ruhemi (desafortunadamente no es un usuario de MSE).

La prueba es la siguiente: utilizando la identidad algebraica $\ b^4+6a^2b^2=\frac12(a-b)^4+\frac12(a+b)^4-a^4$

con $\ a=\ln(1-x)$ y $\ b=\ln(1+x)$ , dividir ambos lados por $x$ luego integrar, obtenemos

$$I=\frac12\underbrace{\int_0^1\frac1x{\ln^4\left(\frac{1-x}{1+x}\right)}\ dx}_{\frac{1-x}{1+x}=y}+\underbrace{\frac12\int_0^1\frac{\ln^4(1-x^2)}{x}\ dx}_{x^2=y}-\int_0^1\frac{\ln^4(1-x)}{x}\ dx$$

$$=\int_0^1\frac{\ln^4x}{1-x^2}+\frac14\int_0^1\frac{\ln^4(1-x)}{x}\ dx-\int_0^1\frac{\ln^4(1-x)}{x}\ dx$$ $$=\frac12\int_0^1\frac{\ln^4x}{1-x}+\frac12\int_0^1\frac{\ln^4x}{1+x}-\frac34\underbrace{\int_0^1\frac{\ln^4(1-x)}{x}\ dx}_{1-x=y}$$ $$=\frac12\int_0^1\frac{\ln^4x}{1+x}\ dx+\frac14\int_0^1\frac{\ln^4x}{1-x}\ dx=\frac12\left(\frac{45}{2}\zeta(5)\right)+\frac14(24\zeta(5))=\frac{21}4\zeta(5)$$


Por otro lado, $\quad\displaystyle I=\underbrace{\int_0^1\frac{\ln^4(1+x)}{x}\ dx}_{I_1}+6\int_0^1\frac{\ln^2(1-x)\ln^2(1+x)}{x}\ dx$

Utilizando $\ln^2(1+x)=2\sum_{n=1}^\infty(-1)^n\left(\frac{H_n}{n}-\frac{1}{n^2}\right)x^n\ $ para la segunda integral, obtenemos

\begin{align} I&=I_1+12\sum_{n=1}^\infty(-1)^n\left(\frac{H_n}{n}-\frac{1}{n^2}\right)\int_0^1x^{n-1}\ln^2(1-x)\ dx\\ I&=I_1+12\sum_{n=1}^\infty(-1)^n\left(\frac{H_n}{n}-\frac{1}{n^2}\right)\left(\frac{H_n^2+H_n^{(2)}}{n}\right)\\ I&=I_1+12\sum_{n=1}^\infty(-1)^n\left(\frac{H_n^3+H_nH_n^{(2)}}{n^2}\right)-12\sum_{n=1}^\infty(-1)^n\left(\frac{H_n^2+H_n^{(2)}}{n^3}\right)\tag{2} \end{align} Desde $(1)$ y $(2)$ obtenemos

$$\boxed{\small{R_1=\sum_{n=1}^\infty\frac{(-1)^nH_n^3}{n^2}+\sum_{n=1}^\infty\frac{(-1)^nH_nH_n^{(2)}}{n^2}=\frac{7}{16}\zeta(5)+\sum_{n=1}^\infty\frac{(-1)^nH_n^2}{n^3}+\sum_{n=1}^\infty\frac{(-1)^nH_n^{(2)}}{n^3}-\frac{1}{12}I_1}}$$

y se establece la primera relación.


Para obtener la segunda relación, tenemos que utilizar la fórmula del número esterlina ( comprobar aquí ) $$ \frac{\ln^k(1-x)}{k!}=\sum_{n=k}^\infty(-1)^k \begin{bmatrix} n \\ k \end{bmatrix}\frac{x^n}{n!}$$ dejando $k=4$ y utilizando $\displaystyle\begin{bmatrix} n \\ 4 \end{bmatrix}=\frac{1}{3!}(n-1)!\left[\left(H_{n-1}\right)^3-3H_{n-1}H_{n-1}^{(2)}+2H_{n-1}^{(3)}\right],$ obtenemos $$\frac14\ln^4(1-x)=\sum_{n=1}^\infty\frac{x^{n+1}}{n+1}\left(H_n^3-3H_nH_n^{(2)}+2H_n^{(3)}\right)$$

diferenciar ambos lados con respecto a $x$ obtenemos $$-\frac{\ln^3(1-x)}{1-x}=\sum_{n=1}^\infty x^n\left(H_n^3-3H_nH_n^{(2)}+2H_n^{(3)}\right)$$

Ahora reemplaza $x$ con $-x$ entonces multiplica ambos lados por $\frac{\ln x}{x}$ e integramos, obtenemos $$-\sum_{n=1}^\infty(-1)^n\left(H_n^3-3H_nH_n^{(2)}+2H_n^{(3)}\right)\int_0^1x^{n-1}\ln x\ dx=\int_0^1\frac{\ln^3(1+x)\ln x}{x(1+x)}\ dx$$ $$\sum_{n=1}^\infty \frac{(-1)^n}{n^2}\left(H_n^3-3H_nH_n^{(2)}+2H_n^{(3)}\right)=\int_0^1\frac{\ln^3(1+x)\ln x}{x}\ dx-\underbrace{\int_0^1\frac{\ln^3(1+x)\ln x}{1+x}\ dx}_{IBP}$$ $$\sum_{n=1}^\infty \frac{(-1)^n}{n^2}\left(H_n^3-3H_nH_n^{(2)}+2H_n^{(3)}\right)=\int_0^1\frac{\ln^3(1+x)\ln x}{x}\ dx+\frac14I_1$$ Reordenando los términos, obtenemos $$\boxed{R_2=\sum_{n=1}^\infty\frac{(-1)^nH_n^3}{n^2}-3\sum_{n=1}^\infty\frac{(-1)^nH_nH_n^{(2)}}{n^2}=\int_0^1\frac{\ln^3(1+x)\ln x}{x}-2\sum_{n=1}^\infty\frac{(-1)^nH_n^{(3)}}{n^2}+\frac14I_1}$$ y se establece la segunda relación.


Ahora estamos listos para calcular la primera suma . \begin{align} \sum_{n=1}^\infty\frac{(-1)^nH_n^3}{n^2}&=\frac{3R_1+R_2}{4}\\ &=\frac34\sum_{n=1}^\infty\frac{(-1)^nH_n^2}{n^3}+\frac34\sum_{n=1}^\infty\frac{(-1)^nH_n^{(2)}}{n^3}-\frac12\sum_{n=1}^\infty\frac{(-1)^nH_n^{(3)}}{n^2}\\ &\quad+\frac14\int_0^1\frac{\ln x\ln^3(1+x)}{x}\ dx+\frac{21}{64}\zeta(5) \end{align} se puede encontrar la forma cerrada de la primera y segunda suma aquí y la forma cerrada de la tercera suma se evalúa aquí . en cuanto a la integral, la evalué aquí . combinando estos resultados, obtenemos nuestra forma cerrada.

y la segunda suma . $$\sum_{n=1}^\infty\frac{(-1)^nH_nH_n^{(2)}}{n^2}=\frac{R_1-R_2}{4}$$ $$\small{=\frac14\sum_{n=1}^\infty\frac{(-1)^nH_n^2}{n^3}+\frac14\sum_{n=1}^\infty\frac{(-1)^nH_n^{(2)}}{n^3}+\frac12\sum_{n=1}^\infty\frac{(-1)^nH_n^{(3)}}{n^2}-\frac14\int_0^1\frac{\ln x\ln^3(1+x)}{x}\ dx-\frac1{12}I_1+\frac{7}{64}\zeta(5)}$$ permite calcular $I_1$ y al establecer $\frac1{1+x}=y$ obtenemos \begin{align} I_1&=\int_0^1\frac{\ln^4(1+x)}{x}=\int_{1/2}^1\frac{\ln^4x}{x}\ dx+\int_{1/2}^1\frac{\ln^4x}{1-x}\ dx\\ &=\frac15\ln^52+\sum_{n=1}^\infty\int_{1/2}^1 x^{n-1}\ln^4x\ dx\\ &=\frac15\ln^52+\sum_{n=1}^\infty\left(\frac{24}{n^5}-\frac{24}{n^52^n}-\frac{24\ln2}{n^42^n}-\frac{12\ln^22}{n^32^n}-\frac{4\ln^32}{n^22^n}-\frac{\ln^42}{n2^n}\right)\\ &=4\ln^32\zeta(2)-\frac{21}2\ln^22\zeta(3)+24\zeta(5)-\frac45\ln^52-24\ln2\operatorname{Li}_4\left(\frac12\right)-24\operatorname{Li}_5\left(\frac12\right) \end{align} combinando el resultado de $I_1$ junto con los resultados que utilizamos en nuestra primera suma, obtenemos la forma cerrada de la segunda suma.


ACTUALIZACIÓN:

La identidad utilizada anteriormente:

$$-\frac{\ln^3(1-x)}{1-x}=\sum_{n=1}^\infty x^n\left(H_n^3-3H_nH_n^{(2)}+2H_n^{(3)}\right)$$

también se puede demostrar de esta manera .

0 votos

La primera integral apareció en RMM el año pasado. Véase ssmrmh.ro/2018/11/12/integral-calculus-79 ¿Se sabía antes?

0 votos

@Zacky se publicó en un grupo de Facebook y mi amigo lo resolvió. Recuerdo que se publicó y se resolvió el año pasado, pero no estoy seguro de qué mes. No sabía que es un problema de RMM ya que no sigo mucho las revistas.

0 votos

@Zacky usar la identidad algebraica para integrales logarítmicas es una técnica común sin embargo.

2voto

Ali Shather Puntos 836

Un enfoque diferente

En primer lugar, definamos

$$M=\sum_{n=1}^\infty\frac{(-1)^nH_n^3}{n^2}$$

$$N=\sum_{n=1}^\infty\frac{(-1)^nH_nH_n^{(2)}}{n^2}$$

$$P=\sum_{n=1}^\infty\frac{(-1)^nH_n^{(3)}}{n^2}$$

Voy a establecer dos relaciones y a resolverlas como un sistema de ecuaciones.


Primera relación:

Desde aquí tenemos

$$-\int_0^1x^{n-1}\ln^3(1-x)\ dx=\frac{H_n^3+3H_nH_n^{(2)}+2H_n^{(3)}}{n}$$

Multiplica ambos lados por $\frac{(-1)^n}{n}$ entonces $\sum_{n=1}^\infty$ tenemos

$$M+3N+2P=\int_0^1\frac{\ln^3(1-x)}{x}\sum_{n=1}^\infty\frac{(-x)^{n-1}}{n}dx=\int_0^1\frac{\ln^3(1-x)\ln(1+x)}{x}dx\tag1$$


Segunda relación:

Desde aquí tenemos

$$\sum_{n=1}^\infty\left(H_n^3-3H_nH_n^{(2)}+2H_n^{(3)}\right)x^n=-\frac{\ln^3(1-x)}{1-x}$$

Sustituir $x$ con $-x$ y multiplicar ambos lados por $-\frac{\ln x}{x}$ entonces $\int_0^1$ y utilizar $-\int_0^1 x^{n-1}\ln xdx=\frac{1}{n^2}$ obtenemos

$$M-3N+2P=\int_0^1\frac{\ln^3(1+x)\ln x}{x(1+x)}dx\tag2$$


Así que

$$M=\frac{(1)+(2)}{2}=\frac12\color{blue}{\int_0^1\frac{\ln^3(1-x)\ln(1+x)}{x}dx}+\frac12\color{red}{\int_0^1\frac{\ln^3(1+x)\ln x}{x(1+x)}dx}-2P$$

la primera integral está bien calculada por @Song aquí

$$\color{blue}{\int_0^1\frac{\ln^3(1-x)\ln(1+x)}{x}dx}=6\operatorname{Li}_5\left(\frac12\right)+6\ln2\operatorname{Li}_4\left(\frac12\right)-\frac{81}{16}\zeta(5)-\frac{21}{8}\zeta(2)\zeta(3)\quad+\frac{21}8\ln^22\zeta(3)-\ln^32\zeta(2)+\frac15\ln^52$$

Para la segunda integral,

$$\color{red}{\int_0^1\frac{\ln^3(1+x)\ln x}{x(1+x)}dx}=\int_0^1\frac{\ln^3(1+x)\ln x}{x}dx-\underbrace{\int_0^1\frac{\ln^3(1+x)\ln x}{1+x}dx}_{IBP}$$

$$=\int_0^1\frac{\ln^3(1+x)\ln x}{x}dx+\frac14\int_0^1\frac{\ln^4(1+x)}{x}dx$$

donde la primera parte se calcula aquí

$$\int_0^1\frac{\ln^3(1+x)\ln x}{x}dx=-12\operatorname{Li}_5\left(\frac12\right)-12\ln2\operatorname{Li}_4\left(\frac12\right)+\frac{99}{16}\zeta(5)+3\zeta(2)\zeta(3)\\-\frac{21}4\ln^22\zeta(3)+2\ln^32\zeta(2)-\frac25\ln^52$$

y la segunda parte se puede calcular mediante la generalización

$$\int_0^1\frac{\ln^n(1+x)}{x}dx=\frac{\ln^{n+1}(2)}{n+1}+n!\zeta(n+1)+\sum_{k=0}^n k!{n\choose k}\ln^{n-k}(2)\operatorname{Li}_{k+1}\left(\frac12\right)$$

que da

$$\small{\int_0^1\frac{\ln^4(1+x)}{x}dx=4\ln^32\zeta(2)-\frac{21}2\ln^22\zeta(3)+24\zeta(5)-\frac45\ln^52-24\ln2\operatorname{Li}_4\left(\frac12\right)-24\operatorname{Li}_5\left(\frac12\right)}$$

combinando las dos partes tenemos

$$\color{red}{\int_0^1\frac{\ln^3(1+x)\ln x}{x(1+x)}dx}=-18\operatorname{Li}_5\left(\frac12\right)-18\ln2\operatorname{Li}_4\left(\frac12\right)+\frac{195}{16}\zeta(5)+3\zeta(2)\zeta(3)\\-\frac{63}8\ln^22\zeta(3)+3\ln^32\zeta(2)-\frac35\ln^52$$

Para la suma $P$ ya está calculado aquí

$$P=\sum_{n=1}^\infty\frac{(-1)^nH_n^{(3)}}{n^2}=\frac{21}{32}\zeta(5)-\frac34\zeta(2)\zeta(3)$$

Combinar los resultados de la integral azul, la integral roja y $P$ obtenemos

$$M=-6\operatorname{Li}_5\left(\frac12\right)-6\ln2\operatorname{Li}_4\left(\frac12\right)+\ln^32\zeta(2)-\frac{21}{8}\ln^22\zeta(3)+\frac{27}{16}\zeta(2)\zeta(3)+\frac94\zeta(5)-\frac15\ln^52$$


Y

$$N=\frac{(1)-(2)}{6}=\frac16\color{blue}{\int_0^1\frac{\ln^3(1-x)\ln(1+x)}{x}dx}-\frac16\color{red}{\int_0^1\frac{\ln^3(1+x)\ln x}{x(1+x)}dx}$$

$$=4\operatorname{Li}_5\left(\frac12\right)+4\ln2\operatorname{Li}_4\left(\frac12\right)-\frac23\ln^32\zeta(2)+\frac74\ln^22\zeta(3)-\frac{15}{16}\zeta(2)\zeta(3)-\frac{23}8\zeta(5)+\frac2{15}\ln^52$$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X