4 votos

Una extraña identidad trigonométrica.

En este documento , la ecuación (4.5), los autores establecen la identidad trigonometica.

$$ \ sin \ left (\ frac {n \ pi} {1- \ theta} \ right) = (-1) ^ {n} \ sin \ left (\ frac {n \ pi \ theta} {1- \ theta} \ right) $$ No hay nada como en la lista de identidades trigonométricas de Wikipedia. ¿Cómo podemos probar esto?

11voto

zardos Puntos 41

Insinuación:

Solo escribe $$\sin\left( \frac{n\pi }{1-\theta} \right) =\sin\left( \frac{n\pi(1-\theta + \theta) }{1-\theta} \right) = \sin\left(n\pi + \frac{n\pi\theta}{1-\theta} \right) $ $

Ahora, aplique la fórmula de suma para $\sin(\alpha + \beta)$ .

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X