En este hilo se menciona que:
$$\int_0^\infty \left ( \mathrm{arccot} x \right )^3\; \mathrm{d}x = \frac{3 \pi^2 \ln 2}{4} - \frac{21\zeta(3)}{8}$$
donde $\zeta$ es la de Riemann zeta función.
Los pasos para la solución tomé son:
\begin{align*} \int_{0}^{\infty} \left ( \mathrm{arccot}x \right )^3 \, \mathrm{d}x &= \int_{0}^{\infty} \left ( x \right ) ' \left ( \mathrm{arccot}x \right )^3 \, \mathrm{d}x \\ &=\left [ x \left ( \mathrm{arccot}x \right )^3 \right ]_0^{\infty} +3 \int_{0}^{\infty} \frac{x\left( \mathrm{arccot }x \right )^2}{ x^2+1} \, \mathrm{d}x \\ &=3 \left [ \frac{\ln \left ( 1+x^2 \right ) \, \left (\mathrm{arccot}(x) \right )^2}{2} \right ]_0^{\infty} + 3 \int_{0}^{\infty} \frac{\ln \left ( 1+x^2 \right ) \mathrm{arccot} x}{x^2+1} \, \mathrm{d}x \\ &=3 \left ( \int_{0}^{1} \frac{\ln \left ( 1+x^2 \right ) \mathrm{arccot} x}{x^2+1} \, \mathrm{d}x + \int_1^{\infty} \frac{\ln \left ( 1+x^2 \right ) \mathrm{arccot} x}{x^2+1} \, \mathrm{d}x \right ) \\ &=3 \left ( \int_{0}^{1} \frac{\ln \left ( 1+x^2 \right ) \mathrm{arccot} x}{x^2+1} \, \mathrm{d}x + \int_{0}^{1} \frac{\ln \left ( 1+\frac{1}{x^2} \right ) \arctan x}{1+\frac{1}{x^2}} \cdot \frac{1}{x^2} \, \mathrm{d}x \right ) \\ &=3 \left ( \int_{0}^{1} \frac{\ln \left ( 1+x^2 \right ) \mathrm{arccot} x}{x^2+1} \, \mathrm{d}x + \int_{0}^{1} \frac{\left (\ln \left ( 1+x^2 \right ) - 2 \ln x \right ) \arctan x}{1+x^2} \, \mathrm{d}x \right )\\ &=3\left ( \int_{0}^{1} \frac{\ln \left ( 1+x^2 \right )\left ( \mathrm{arccot} x + \arctan x \right )}{x^2+1} \, \mathrm{d}x - 2 \int_{0}^{1} \frac{\ln x \arctan x}{1+x^2} \, \mathrm{d}x \right ) \\ &=3\left ( \frac{\pi}{2} \int_{0}^{1} \frac{\ln \left ( 1+x^2 \right )}{1+x^2} \, \mathrm{d}x - 2 \int_{0}^{1} \frac{\ln x \arctan x}{1+x^2} \, \mathrm{d}x \right ) \end{align*}
Vamos ahora a calcular la primera integral:
\begin{align*} \int_{0}^{1} \frac{\ln \left ( 1+x^2 \right )}{1+x^2} \, \mathrm{d}x &\overset{x=\tan \theta}{=\! =\! =\! =\! =\!} \int_{0}^{\pi/4} \frac{\ln \left ( 1+\tan^2 \theta \right )}{1+\tan^2 \theta} \cdot \sec^2 \theta \, \mathrm{d}\theta\\ &=\int_{0}^{\pi/4} \ln \left ( 1+ \tan^2 \theta \right ) \, \mathrm{d}\theta \\ &= \int_{0}^{\pi/4} \ln \sec^2 \theta \, \mathrm{d} \theta \\ &=2 \int_{0}^{\pi/4} \ln \sec \theta \, \mathrm{d} \theta \\ &=-2 \int_{0}^{\pi/4} \ln \cos \theta \, \mathrm{d} \theta \\ &=-2 \left ( -\int_{0}^{\pi/4} \left (\sum_{n=1}^{\infty} (-1)^n \frac{\cos 2n \theta}{n} - \ln 2 \right ) \, \mathrm{d}\theta \right )\\ &=2 \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \int_{0}^{\pi/4} \cos 2n\theta \, \mathrm{d} \theta +2 \int_{0}^{\pi/4} \ln 2 \, \mathrm{d}\theta \\ &= 2 \sum_{n=1}^{\infty} \frac{(-1)^n \sin \frac{n \pi}{2}}{2n^2} +\frac{\pi \ln 2}{2} \\ &= \sum_{n=1}^{\infty} \frac{(-1)^n \sin \frac{n \pi}{2}}{2n^2} + \frac{\pi \ln 2}{2} \\ &=\frac{\pi \ln 2}{2} + \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^2}\\ &= \frac{\pi \ln 2}{2} - \mathcal{G} \end{align*}
donde $\mathcal{G}$ es el catalán es constante.
Vamos a pasar a la segunda integral:
\begin{align*} \int_{0}^{1} \frac{\ln x \arctan x}{1+x^2} \, \mathrm{d}x &=\int_{0}^{1} \ln x \sum_{n=1}^{\infty} (-1)^{n-1} \left ( \mathcal{H}_{2n} - \frac{\mathcal{H}_n}{2} \right ) x^{2n-1} \, \mathrm{d}x \\ &=\sum_{n=1}^{\infty} (-1)^{n-1} \left ( \mathcal{H}_{2n} - \frac{\mathcal{H}_n}{2} \right ) \int_{0}^{1}x^{2n-1} \ln x \, \mathrm{d}x \\ &=-\frac{1}{4}\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\mathcal{H}_{2n}- \frac{\mathcal{H}_n}{2}}{n^2} \\ &= \frac{1}{4} \sum_{n=1}^{\infty} (-1)^n \frac{\mathcal{H}_{2n} - \frac{\mathcal{H}_n}{2}}{n^2} \\ &=\frac{1}{4} \sum_{n=1}^{\infty} (-1)^n \frac{\mathcal{H}_{2n}}{n^2} -\frac{1}{8} \sum_{n=1}^{\infty} (-1)^{n} \frac{\mathcal{H}_n}{n^2} \end{align*}
La segunda suma es un viejo cuento de evaluación a
$$\sum_{n=1}^{\infty} (-1)^n \frac{\mathcal{H}_n}{n^2} = -\frac{5 \zeta(3)}{8}$$
ver por ejemplo este enlace.La primera suma debe llevar la $\mathcal{G}$ en . La pregunta es ¿cómo?