J=∫∞0arctanxlnx1+x2dxK=∫10arctanxlnx1+x2dx
Definir en [0;+∞[ la función,
R(x)=∫x0lnt1+t2dt=∫10xln(tx)1+t2x2dt
Observar que,
lim
Realizar la integración por partes,
\begin{align}J&=\Big[R(x)\arctan x\Big]_0^\infty-\int_0^\infty \left(\int_0^1 \frac{x\ln(tx)}{(1+t^2x^2)(1+x^2)}\,dt\right)\,dx\\
&=-\int_0^\infty\left(\int_0^1 \frac{x\ln x}{(1+t^2x^2)(1+x^2)}\,dt\right)\,dx-\int_0^1 \left(\int_0^\infty \frac{x\ln t}{(1+t^2x^2)(1+x^2)}\,dx\right)\,dt\\
&=-\int_0^\infty \ln x\left[\frac{\arctan(tx)}{1+x^2}\right]_{t=0}^{t=1} \,dx-\int_0^1 \ln t\left[\frac{\ln\left(\frac{1+x^2}{1+t^2x^2}\right)}{2(1-t^2)}\right]_{x=0}^{x=\infty}\,dt\\
&=-J+\int_0^1 \frac{\ln^2 t}{1-t^2}\,dt\\
&=-J+\int_0^1 \frac{\ln^2 t}{1-t}\,dt-\int_0^1 \frac{t\ln^2 t}{1-t^2}\,dt\\
\end{align}
En el último integral realizar el cambio de variable variable \displaystyle y=x^2,
\begin{align}J&=-J+\left(1-\frac{1}{8}\right)\int_0^1 \frac{\ln^2 t}{1-t}\,dt\\
&=-J+\left(1-\frac{1}{8}\right)\times 2\zeta(3)\\
\end{align}
Por lo tanto,
\begin{align}\boxed{J=\dfrac{7}{8}\zeta(3)}\end{align}
Pero,
\begin{align}J&=\int_0^1 \frac{\arctan x\ln x}{1+x^2}\,dx+\int_1^\infty \frac{\arctan x\ln x}{1+x^2}\,dx\\
&=K+\int_1^\infty \frac{\arctan x\ln x}{1+x^2}\,dx\end{align}
Realizar el cambio de variable y=\dfrac{1}{x},
\begin{align}J&=K-\int_0^1 \frac{\arctan \left(\frac{1}{x}\right)\ln x}{1+x^2}\,dx\\
&=2K+\frac{1}{2}\pi\text{G}
\end{align}
por lo tanto,
\begin{align}\boxed{K=\dfrac{7}{16}\zeta(3)-\frac{1}{4}\pi\text{G}}\end{align}
NB:
Para x>0,\arctan x+\arctan\left(\dfrac{1}{x}\right)=\dfrac{\pi}{2}
\displaystyle \int_0^1 \dfrac{\ln x}{1+x^2}\,dx=-\text{G}
\text{G} el catalán es constante.
Addendum:
\begin{align}L&=\int_0^1 \frac{\ln(1+x^2)}{1+x^2}\,dx\end{align}
Realizar el cambio de variable y=\tan x,
\begin{align}L&=-2\int_0^{\frac{\pi}{4}}\ln(\cos x)\,dx\end{align}
\begin{align}A&=\int_0^{\frac{\pi}{4}}\ln(\cos x)\,dx\\
B&=\int_0^{\frac{\pi}{4}}\ln(\sin x)\,dx\\
A+B&=\int_0^{\frac{\pi}{4}}\ln(\sin x\cos x)\,dx\\
&=\int_0^{\frac{\pi}{4}}\ln\left(\frac{\sin(2x)}{2}\right)\,dx\\
&=\int_0^{\frac{\pi}{4}}\ln\left(\sin(2x)\right)\,dx-\frac{\pi}{4}\ln 2\\
\end{align}
Realizar el cambio de variable \displaystyle y=2x,
\begin{align}A+B&=\frac{1}{2}\int_0^{\frac{\pi}{2}}\ln\left(\sin x\right)\,dx-\frac{\pi}{4}\ln 2\\
&=\frac{1}{2}\times -\frac{\pi}{2}\ln 2-\frac{\pi}{4}\ln 2\\
&=-\frac{\pi}{2}\ln 2\\
B-A&=\int_0^{\frac{\pi}{4}}\ln\left(\tan x\right)\,dx\\
&=-\text{G}\\\end{align}
Por lo tanto,
\begin{align}A&=\frac{1}{2}\text{G}-\frac{1}{4}\pi\ln 2\\
B&=-\frac{1}{2}\text{G}-\frac{1}{4}\pi\ln 2
\end{align}
Por lo tanto,
\begin{align}\boxed{L=\frac{1}{2}\pi\ln 2-\text{G}}\end{align}