Dejar $\arcsin( \frac{1}{2} \sqrt{2-\sqrt {2-x}})=y$
$\implies-\dfrac\pi2\le y\le\dfrac\pi2$
y$\dfrac12\sqrt{2-\sqrt {2-x}}=\sin y$
$\implies2-\sqrt {2-x}=(2\sin y)^2$
Utilizando $\cos2A=2\cos^2A-1=1-2\sin^2A,$
$\sqrt {2-x}=2-4\sin^2y=2\cos2y$
$\implies x=2-(2\cos2y)^2=-2\cos4y$
$\implies\cos4y=-\dfrac x2$
$ \ arccos \ left (- \ dfrac x2 \ right) = \begin{cases}2\pi+4y &\mbox{if } -2\pi\le4y<-\pi \\-4y &\mbox{if } -\pi\le4y<0\\ 4y &\mbox{if } 0\le4y\le\pi \\
2\pi-4y & \mbox{if }\pi<4y\le2\pi \end {cases} $
Ahora $\arccos\left(-\dfrac x2\right)=\dfrac\pi2-\arcsin\left(-\dfrac x2\right)$
$\implies\arccos\left(-\dfrac x2\right)=\dfrac\pi2+\arcsin\dfrac x2$ como $\arcsin(-u)=-\arcsin u$