8 votos

Evaluar

Demostrar que $$\int_0^{\infty} \frac {\ln(1+x^3)}{1+x^2}dx=\frac {\pi \ln 2}{4}-\frac {G}{3}+\frac {2\pi}{3}\ln(2+\sqrt 3)$$ Where $G$ es el catalán es constante.

En realidad me demostró el uso de la Feynman el truco es decir, al introducir el parámetro de $a$ tal que $$\xi(a)=\int_0^{\infty} \frac {\ln(1+ax^3)}{1+x^2}dx$$

Donde es claro que $\xi(0)=0$, por lo tanto sólo tenemos $$\int_0^1 \xi'(a)da$$ que me pareció demasiado. Por lo tanto demostrando la afirmación, pero este método era demasiado largo, ya que se trataba de pesado parcial fracción de descomposición y una infinita suma.

Puede alguien sugerir algún método mejor?

Edit: también he tratado de trigonometría ataques mediante la sustitución de $x=\tan \theta$ pero se quedó atascado a mitad de camino

8voto

Zacky Puntos 162

Observación. He encontrado una similar integral hace un par de meses y la propuesta que aquí se$(I_8)$. $$\sf I_8=\int_0^1 \frac{\ln(1+x^3)}{1+x^2}dx\overset{x=\frac{1}{x}}=\int_1^\infty\frac{\ln(1+x^3)-3\ln x}{1+x^2}dx$$ $$\sf \Rightarrow 2I_8=\int_0^\infty \frac{\ln(1+x^3)}{1+x^2}dx-3\int_1^\infty \frac{\ln x}{1+x^2}dx\Rightarrow \boxed{I_8=\frac12I-\frac32G}$$


Podemos resolver sin el uso parcial de la fracción o de la serie en al menos dos maneras en las que puedo pensar. La segunda solución podría ser más fácil, pero me gusta el primero uno más.

Solución 1. Comience por dejar $\sf x=\frac{1-t}{1+t}\Rightarrow dx=-\frac{2}{(1+t)^2}dt$ $$\sf I=\int_0^\infty \frac{\ln(1+x^3)}{1+x^2}dx=\int_{-1}^1 \frac{\ln\left(\frac{2(1+3t^2)}{(1+t)^3}\right)}{t^2+1}dt$$ $$\sf =2\ln 2\int_0^1\frac{1}{1+t^2}dt-3\int_{-1}^1\frac{\ln(1+t)}{1+t^2}dt+2\underbrace{\int_0^1 \frac{\ln(1+3t^2)}{1+t^2}dt}_{J}$$ $$\sf =\frac{\pi}{2}\ln 2 -\frac{3\pi}{4}\ln 2 +3G +2J$$ Donde $G$ es el catalán es constante y que es muy fácil de demostrar. Ahora para Feynman el truco de considerar: $$\sf J(a)=\int_0^1 \frac{\ln((1+x^2)a+2x^2)}{1+x^2}dx\Rightarrow J'(a)=\int_0^1 \frac{1}{(1+x)^2a+2x^2}dx$$

$$\sf =\frac{1}{a+2}\int_0^1 \frac{1}{x^2+\frac{a}{a+2}}dx=\frac{1}{\sqrt{a}\sqrt{a+2}}\arctan\left(\frac{\sqrt {a+2}}{\sqrt a}\right)$$

Tenemos $$\sf J(0)=\int_0^1 \frac{\ln 2 +\ln(x^2)}{1+x^2}dx=\frac{\pi}{4}\ln 2-2G$$ $$\sf \Rightarrow J=J(1)-J(0)+J(0)=\underbrace{\int_0^1 J'(a)da}_{X} +J(0)$$ $$\sf \text{let } \sqrt{\frac{a+2}{a}}=t\Rightarrow \frac{1}{\sqrt{a}\sqrt{a+2}}da=-\frac{2}{x^2-1}dx$$ $$\sf X=\int_0^1 \frac{1}{\sqrt{a}\sqrt{a+2}}\arctan\left(\frac{\sqrt {a+2}}{\sqrt a}\right)da=2\int_\sqrt 3^\infty \frac{\arctan x}{x^2-1}dx$$ $$\sf \overset{IBP}=\frac{\pi}{3}\ln(2+\sqrt 3)-\int_{\sqrt 3}^\infty \frac{\ln\left(\frac{x-1}{x+1}\right)}{1+x^2}dx$$ Con $\sf \frac{x-1}{x+1}= t\Rightarrow x=\frac{1+t}{1-t}$ obtenemos: $$\sf X=\frac{\pi}{3}\ln(2+\sqrt 3)-\int_{2-\sqrt 3}^1 \frac{\ln t}{1+t^2}dt$$$$\sf \overset{t=\tan x}=\frac{\pi}{3}\ln(2+\sqrt 3)-\int_0^{\frac{\pi}{4}}\ln(\tan x)dx+\int_0^\frac{\pi}{12} \ln(\tan x)dx=\frac{\pi}{3}\ln(2+\sqrt 3)+\frac13G$$ Véase, por ejemplo, aquí en el fin de obtener el resultado de arriba. Y, finalmente, tenemos:

$$\sf \boxed{J=\int_0^1\frac{\ln(1+3x^2)}{1+x^2}dx=\frac{\pi}{3}\ln(2+\sqrt 3)+\frac{\pi}{4}\ln 2-\frac53G}$$ $$\sf \boxed{I=\int_0^\infty \frac{\ln(1+x^3)}{1+x^2}dx=\frac{2\pi}{3}\ln(2+\sqrt 3)+\frac{\pi}{4}\ln 2 -\frac13G}$$


Solución 2. Esto debe ser como un seguimiento de su editar intento. Reescribir la integral como $$\sf I=\int_0^\infty \frac{\ln(1-x+x^2)}{1+x^2}dx+\int_0^\infty \frac{\ln(1+x)}{1+x^2}dx$$ El segundo, es bastante fácil, $\sf I_2=\frac{\pi}{4}\ln 2+G$, y para la primera integral deje $\sf x=\tan t$. $$\sf I_1=\int_0^\frac{\pi}{2} \ln(1-\sin t\cos t )dt-2\int_0^\frac{\pi}{2} \ln(\cos t)dt=\frac{\pi}{2} \ln 2 +\int_0^\frac{\pi}{2}\ln(2-\sin t)dt$$ Y ahora que combina con la Solución 2 obtenemos, manteniendo la misma notación encuentran en: $$\sf B=\frac{1}{2}\left((A+B)-(A-B)\right)=\frac12\left(\pi\ln(2+\sqrt 3)-\pi \ln 2+\frac{\pi}{3}\ln(2+\sqrt 3)-\frac83G\right)$$ Y el resultado de la siguiente manera.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X