\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}
\ds{I \equiv
-\int_{0}^{1}\ln\pars{1 + x}\ln\pars{1 - x}\,\dd x =
{\pi^{2} \over 6} + 2\ln\pars{2} - \ln^{2}\pars{2} - 2:\ {\LARGE ?}}.
\begin{align}
I & \equiv
\bbox[10px,#ffd]{-\int_{0}^{1}\ln\pars{1 + x}\ln\pars{1 - x}\,\dd x}
\\[5mm] & =
\int_{0}^{1}{\bracks{\ln\pars{1 - x} - \ln\pars{1 + x}}^{\, 2} -
\bracks{\ln\pars{1 - x} + \ln\pars{1 + x}}^{\, 2} \over 4}\,\dd x
\\[5mm] & =
\underbrace{{1 \over 4}\int_{0}^{1}\ln^{2}\pars{1 - x \over
1 + x}\,\dd x}_{\ds{\equiv\ \mc{I}_{1}}}\ -\
\underbrace{{1 \over 4}\int_{0}^{1}\ln^{2}\pars{1 - x^{2}}\,\dd x}
_{\ds{\equiv\ \mc{I}_{2}}}\ =\
\mc{I}_{1} - \mc{I}_{2}\label{1}\tag{1}
\end{align}
\ds{\Large\mc{I}_{1}:\ ?}
\begin{align}
\mc{I}_{1} & \equiv
{1 \over 4}\int_{0}^{1}\ln^{2}\pars{1 - x \over 1 + x}\,\dd x
\,\,\,\stackrel{\pars{1 - x}/\pars{1 + x}\ =\ t}{=}\,\,\,
{1 \over 2}\int_{0}^{1}{\ln^{2}\pars{t} \over \pars{1 + t}^{2}}
\,\dd t
\\[5mm] & =
{1 \over 2}\sum_{n = 0}^{\infty}\underbrace{-2 \choose n}
_{\ds{\pars{n + 1}\pars{-1}^{n}}}\
\underbrace{\int_{0}^{1}\ln^{2}\pars{t}t^{n}\,\dd t}
_{\ds{2 \over \pars{n +1}^{3}}}\ =\
\sum_{n = 1}^{\infty}{\pars{-1}^{n + 1}\over n^{2}} =
\bbx{\pi^{2} \over 12}\label{2}\tag{2}
\end{align}
\ds{\Large\mc{I}_{2}:\ ?}
\begin{align}
\mc{I}_{2} & \equiv
{1 \over 4}\int_{0}^{1}\ln^{2}\pars{1 - x^{2}}\,\dd x
\,\,\,\stackrel{x^{2}\ \mapsto\ x}{=}\,\,\,
{1 \over 8}\int_{0}^{1}x^{-1/2}\ln^{2}\pars{1 - x}\,\dd x
\\[5mm] & =
\left.{1 \over 8}\,\partiald[2]{}{\mu}\int_{0}^{1}x^{-1/2}
\pars{1 - x}^{\mu}\,\dd x\,\right\vert_{\ \mu\ =\ 0} =
{1 \over 8}\,\partiald[2]{}{\mu}\bracks{\Gamma\pars{1/2}\Gamma\pars{\mu + 1} \over \Gamma\pars{\mu + 3/2}}_{\ \mu\ =\ 0}
\\[5mm] & =
\bbx{-\,{\pi^{2} \over 12} - 2\ln\pars{2} + \ln^{2}\pars{2} + 2}
\label{3}\tag{3}
\end{align}
\eqref{1}, \eqref{2} y \eqref{3} ceder el codiciado resultado
\ds{\bbx{{\pi^{2} \over 6} + 2\ln\pars{2} - \ln^{2}\pars{2} - 2}}.
\ds{\LARGE\mbox{Another Approach}}
\begin{align}
I & \equiv
\bbox[10px,#ffd]{-\int_{0}^{1}\ln\pars{1 + x}\ln\pars{1 - x}\,\dd x}
\,\,\,\stackrel{x + 1\ \mapsto\ x}{=}\,\,\,
-\int_{1}^{2}\ln\pars{x}\ln\pars{2 - x}\,\dd x
\\[5mm] & \stackrel{x/2\ \mapsto\ x}{=}\,\,\,
-2\int_{1/2}^{1}\bracks{\ln\pars{x} + \ln\pars{2}}
\bracks{\ln\pars{1 - x} + \ln\pars{2}}\,\dd x
\\[8mm] & =
-2\int_{1/2}^{1}\ln\pars{x}\ln\pars{1 - x}\,\dd x -
2\ln\pars{2}\
\overbrace{\int_{1/2}^{1}\ln\pars{x}\,\dd x}^{\ds{\ln\pars{2} - 1 \over 2}}
\\[2mm] &
-2\ln\pars{2}\
\underbrace{\int_{1/2}^{1}\ln\pars{1 - x}\,\dd x}
_{\ds{-\,{\ln\pars{2} + 1 \over 2}}} -
2\ln^{2}\pars{2}\int_{1/2}^{1}\,\dd x
\\[8mm] & =
-2\int_{1/2}^{1}\ln\pars{x}\ln\pars{1 - x}\,\dd x +
2\ln\pars{2} - \ln^{2}\pars{2}
\end{align}
El resto de la integral se evalúa con
Euler Reflexión Fórmula. Es decir,
\begin{align}
I & \equiv
\bbox[10px,#ffd]{-\int_{0}^{1}\ln\pars{1 + x}
\ln\pars{1 - x}\,\dd x}
\\[5mm] & =
-2\int_{1/2}^{1}\bracks{{\pi^{2} \over 6} - \mrm{Li}_{2}\pars{x} - \mrm{Li}_{2}\pars{1 - x}}\dd x +
2\ln\pars{2} - \ln^{2}\pars{2}
\\ & \pars{~\mrm{Li}_{2}:\ Dilogarithm~}
\\[5mm] & =
-\,{\pi^{2} \over 6} +
2\int_{0}^{1}\mrm{Li}_{2}\pars{x}\dd x +
2\ln\pars{2} - \ln^{2}\pars{2}
\\[5mm] &
\stackrel{\mrm{IBP}}{=}\,\,\,
-\,{\pi^{2} \over 6} +
\braces{2\,\mrm{Li}_{2}\pars{1} -
2\int_{0}^{1}x\bracks{-\,{\ln\pars{1- x} \over x}}}\dd x +
2\ln\pars{2} - \ln^{2}\pars{2}
\\[5mm] & =
\bbx{{\pi^{2} \over 6} + 2\ln\pars{2} - \ln^{2}\pars{2} - 2}
\qquad\qquad
\left\{\begin{array}{rcl}
\ds{\mrm{Li}_{2}\pars{1}} & \ds{=} & \ds{\pi^{2} \over 6}
\\[1mm]
\ds{\mrm{Li}_{2}'\pars{x}} & \ds{=} &
\ds{-\,{\ln\pars{1 - x} \over x}}
\end{array}\right.
\end{align}