He estado tratando de evaluar esta integral y mediante el uso de wolfram alpha sé que el valor es$$I=-\int_0^1 \ln(1+x)\ln(1-x)dx=\frac{\pi^2}{6}+2\ln(2)-\ln^2(2)-2$$
Mi Intento:
Empiezo por parametizing la integral como $$I(a)=\int_0^1 -\ln(1+x)\ln(1-ax)dx$$ donde $I=I(1)$. Entonces me diferenciar a conseguir $$I'(a)=\int_0^1 \frac{ax\ln(1+x)}{1-ax}dx=\int_0^1 ax\ln(1+x)\sum_{n=0}^\infty(ax)^ndx=\sum_{n=1}^\infty a^{n+1}\int_0^1 x^{n+1}\ln(1+x)dx$$
Al evaluar esta integral por integración por partes y series geométricas puedo conseguir $$\int_0^1 x^{n+1}\ln(1+x)dx=\frac{x^{n+2}}{n+2}\ln(1+x)|_0^1-\frac{1}{n+2}\int_0^1 \frac{x^{n+2}}{1+x}dx=\frac{\ln(2)}{n+2}-\frac{1}{n+2}\int_0^1 x^{n+2}\sum_{k=0}^\infty(-x)^kdx=\frac{\ln(2)}{n+2}-\frac{1}{n+2}\sum_{k=0}^\infty(-1)^k\int_0^1 x^{k+n+2}dx=\frac{\ln(2)}{n+2}-\frac{1}{n+2}\sum_{k=0}^\infty\frac{(-1)^k}{k+n+2}=\frac{\ln(2)}{n+2}-\frac{1}{2(n+2)}\left(\psi_0\left(\frac{n}{2}+2\right)-\psi_0\left(\frac{n}{2}+\frac{3}{2}\right)\right)$$ So I arrive at $$I'(a)=\sum_{n=0}^\infty a^{n+1}\left(\frac{\ln(2)}{n+2}-\frac{1}{2(n+2)}\left(\psi_0\left(\frac{n}{2}+2\right)-\psi_0\left(\frac{n}{2}+\frac{3}{2}\right)\right)\right)$$ Re-indexación puedo conseguir $$I'(a)=\frac{\ln(2)}{a}\sum_{n=2}^\infty \frac{a^n}{n}+\frac{1}{2}\sum_{n=2}^\infty \frac{\psi_0\left(\frac{n+1}{2}\right)}{n}a^{n-1}-\frac{1}{2}\sum_{n=2}^\infty \frac{\psi_0\left(\frac{n}{2}+1\right)}{n}a^{n-1}$$Integrating both sides from $0$ to $1$ I recover $I(1)$ $$I(1)=\int_0^1 \frac{\ln(2)}{a}\left(-\ln(1-a)-a\right)da+\frac{1}{2}\sum_{n=2}^\infty \frac{\psi_0\left(\frac{n+1}{2}\right)}{n^2}-\frac{1}{2}\sum_{n=2}^\infty \frac{\psi_0\left(\frac{n}{2}+1\right)}{n^2}$$ , A continuación, utilizando la ecuación integral para la Dilogarithm llego a $$I(1)=\ln(2)\int_0^1 -\frac{\ln(1-a)}{a}da-\ln(2)+\frac{1}{2}\sum_{n=2}^\infty \frac{\psi_0\left(\frac{n+1}{2}\right)}{n^2}-\frac{1}{2}\sum_{n=2}^\infty \frac{\psi_0\left(\frac{n}{2}+1\right)}{n^2}$$ $$I(1)=\frac{\ln(2)\pi^2}{6}-\ln(2)+\frac{1}{2}\sum_{n=2}^\infty \frac{\psi_0\left(\frac{n+1}{2}\right)}{n^2}-\frac{1}{2}\sum_{n=2}^\infty \frac{\psi_0\left(\frac{n}{2}+1\right)}{n^2}$$
En este punto yo no podía seguir más, puesto que no sabía cómo simplificar la Digamma términos en la suma. Creo que usando la función Digamma la relación Armónica de los Números podría ser posible explotar los valores conocidos de la Armónica sumas de dinero para llegar a la respuesta, pero no pude obtener las sumas en una forma en que esto iba a funcionar. Si alguien pudiera ayudarme a seguir más o déjame saber si estoy en el camino correcto me sería de gran aprecio. Gracias de antemano.