$\newcommand{\+}{^{\dagger}}% \newcommand{\angles}[1]{\left\langle #1 \right\rangle}% \newcommand{\braces}[1]{\left\lbrace #1 \right\rbrace}% \newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}% \newcommand{\ceil}[1]{\,\left\lceil #1 \right\rceil\,}% \newcommand{\dd}{{\rm d}}% \newcommand{\down}{\downarrow}% \newcommand{\ds}[1]{\displaystyle{#1}}% \newcommand{\equalby}[1]{{#1 \atop {= \atop \vphantom{\huge A}}}}% \newcommand{\expo}[1]{\,{\rm e}^{#1}\,}% \newcommand{\fermi}{\,{\rm f}}% \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}% \newcommand{\half}{{1 \over 2}}% \newcommand{\ic}{{\rm i}}% \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow}% \newcommand{\isdiv}{\,\left.\right\vert\,}% \newcommand{\ket}[1]{\left\vert #1\right\rangle}% \newcommand{\ol}[1]{\overline{#1}}% \newcommand{\pars}[1]{\left( #1 \right)}% \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}}% \newcommand{\root}[2][]{\,\sqrt[#1]{\,#2\,}\,}% \newcommand{\sech}{\,{\rm sech}}% \newcommand{\sgn}{\,{\rm sgn}}% \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}}% \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$ \begin{align} \color{#00f}{\large\vec{R}_{\rm cm}}&\equiv\left. {\ds{\int z^{2}\pars{x\hat{x} + y\hat{y} + z\hat{z}}\,\dd x\,\dd y\,\dd z} \over \ds{\int z^{2}\,\dd x\,\dd y\,\dd z}} \right\vert_{{x^{2} \over a^{2}}\ +\ {y^{2} \over b^{2}}\ +\ {z^{2} \over c^{2}}\ <\ 1 \,,\ z\ >\ 0} \\[1cm]&= \left.{\ds{\int z^{3}\,\dd x\,\dd y\,\dd z}\over \ds{\int z^{2}\,\dd x\,\dd y\,\dd z}}\,\hat{z} \right\vert_{{x^{2} \over a^{2}}\ +\ {y^{2} \over b^{2}}\ +\ {z^{2} \over c^{2}}\ <\ 1 \,,\ z\ >\ 0} \\[1cm]&=\left.{\ds{\verts{abc^{4}}\int z^{3}\,\dd x\,\dd y\,\dd z} \over \ds{\verts{abc^{3}}\int z^{2}\,\dd x\,\dd y\,\dd z}}\,\hat{z} \right\vert_{x^{2}\ +\ y^{2}\ +\ z^{2}\ <\ 1\,,\ z\ >\ 0} =\left.{\ds{\int z^{3}\,\dd x\,\dd y\,\dd z} \over \ds{\int z^{2}\,\dd x\,\dd y\,\dd z}}\ \verts{c}\,\hat{z} \right\vert_{r\ <\ 1\,,\ z\ >\ 0} \\[1cm]&={\ds{2\pi\int_{0}^{1}\dd r\,r^{5}\int_{0}^{\pi/2}\dd\theta\,\sin\pars{\theta}\cos^{3}\pars{\theta}} \over \ds{2\pi\int_{0}^{1}\dd r\,r^{4}\int_{0}^{\pi/2}\dd\theta\,\sin\pars{\theta}\cos^{2}\pars{\theta}}}\ \verts{c}\,\hat{z} ={5 \over 6}\,{\ds{\int_{0}^{1}\xi^{3}\,\dd\xi}\over \ds{\int_{0}^{1}\xi^{2}\,\dd\xi}}\ \verts{c}\,\hat{z} =\color{#00f}{\large{5 \over 8}\,\verts{c}\,\hat{z}} \end{align}