A partir de
$$S = \sum_{q=0}^{K-1} {K-1+q\choose K-1} \frac{a^q b^K + a^K b^q}{(a+b)^{q+K}}$$
obtenemos dos piezas
$$\frac{b^K}{(a+b)^K} \sum_{q=0}^{K-1} {K-1+q\choose K-1} \frac{a^q}{(a+b)^q} \\ + \frac{a^K}{(a+b)^K} \sum_{q=0}^{K-1} {K-1+q\choose K-1} \frac{b^q}{(a+b)^q}.$$
Esto es
$$\frac{b^K}{(a+b)^K} [z^{K-1}] \frac{1}{1-z} \frac{1}{(1-az/(a+b))^K} \\ + \frac{a^K}{(a+b)^K} [z^{K-1}] \frac{1}{1-z} \frac{1}{(1-bz/(a+b))^K}.$$
Llame a estos $S_1$ y $S_2.$ La primera suma es
$$S_1 = \frac{b^K}{(a+b)^K} \mathrm{Res}_{z=0} \frac{1}{z^K} \frac{1}{1-z} \frac{1}{(1-az/(a+b))^K} \\ = b^K \mathrm{Res}_{z=0} \frac{1}{z^K} \frac{1}{1-z} \frac{1}{(a+b-az)^K} \\ = \frac{b^K}{a^K} \mathrm{Res}_{z=0} \frac{1}{z^K} \frac{1}{1-z} \frac{1}{((a+b)/a-z)^K} \\ = (-1)^{K+1} \frac{b^K}{a^K} \mathrm{Res}_{z=0} \frac{1}{z^K} \frac{1}{z-1} \frac{1}{(z-(a+b)/a)^K}.$$
Ahora los residuos suman cero, así que lo calculamos a partir de los residuos en los polos en $z=1$ y $z=(a+b)/a.$ El residuo en el infinito es cero por inspección. El residuo en $z=1$ es
$$(-1)^{K+1} \frac{b^K}{a^K} \frac{1}{(1-(a+b)/a)^K} = (-1)^{K+1} b^K \frac{1}{(a-(a+b))^K} \\ = (-1)^{K+1} b^K \frac{1}{(-b)^K} = -1.$$
Para el residuo en $z=(a+b)/a$ necesitamos
$$\frac{1}{(K-1)!} \left(\frac{1}{z^K} \frac{1}{z-1} \right)^{(K-1)} \\ = \frac{1}{(K-1)!} \sum_{q=0}^{K-1} {K-1\choose q} (-1)^q \frac{(K-1+q)!}{(K-1)!} \frac{1}{z^{K+q}} (-1)^{K-1-q} \frac{(K-1-q)!}{(z-1)^{K-q}} \\ = (-1)^{K+1} \sum_{q=0}^{K-1} {K-1+q\choose K-1} \frac{1}{z^{K+q}} \frac{1}{(z-1)^{K-q}}.$$
Evaluando el residuo encontramos
$$\left. (-1)^{K+1} \frac{b^K}{a^K} (-1)^{K+1} \sum_{q=0}^{K-1} {K-1+q\choose K-1} \frac{1}{z^{K+q}} \frac{1}{(z-1)^{K-q}} \right|_{z=(a+b)/a} \\ = \frac{b^K}{a^K} \sum_{q=0}^{K-1} {K-1+q\choose K-1} \frac{a^{K+q}}{(a+b)^{K+q}} \frac{1}{((a+b)/a-1)^{K-q}} \\ = \sum_{q=0}^{K-1} {K-1+q\choose K-1} \frac{a^{K+q}}{(a+b)^{K+q}} \frac{b^q}{a^q} \frac{b^{K-q}}{a^{K-q}}\frac{1}{((a+b)/a-1)^{K-q}} \\ = \sum_{q=0}^{K-1} {K-1+q\choose K-1} \frac{a^{K+q}}{(a+b)^{K+q}} \frac{b^q}{a^q} \\ = \frac{a^K}{(a+b)^K} \sum_{q=0}^{K-1} {K-1+q\choose K-1} \frac{b^q}{(a+b)^{q}} = S_2.$$
Reconocemos $S_2$ y por lo tanto hemos demostrado que
$$S_1-1+S_2 = 0$$
o
$$\bbox[5px,border:2px solid #00A000]{ \sum_{q=0}^{K-1} {K-1+q\choose K-1} \frac{a^q b^K + a^K b^q}{(a+b)^{q+K}} = 1}$$
como se afirma.
Adenda. Se trata de un caso especial con $x=a/(a+b)$ de la identidad en este Enlace MSE .