$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{\mathrm{i}} \newcommand{\iff}{\Leftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\, #2 \,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$ Pregunta : $\ds{\int_{0}^{\pi/2}{\sin^{2}\pars{ax} \over \sin^{2}\pars{x}}\,\dd x\,,\quad a \in \mathbb{R}}$
\begin{align} &\color{#f00}{\int_{0}^{\pi/2}{\sin^{2}\pars{ax} \over \sin^{2}\pars{x}}\,\dd x} = \int_{0}^{\pi/2}{1 - \cos\pars{2ax} \over 1 - \cos\pars{2x}}\,\dd x = \half\int_{0}^{\pi}{1 - \cos\pars{ax} \over 1 - \cos\pars{x}}\,\dd x \\[3mm] = &\ {1 \over 4}\int_{-\pi}^{\pi}{1 - \cos\pars{ax} \over 1 - \cos\pars{x}}\,\dd x = {1 \over 4}\,\Re\int_{-\pi}^{\pi}{1 + \verts{a}x\ic - \expo{\verts{a}x\ic} \over 1 - \cos\pars{x}}\,\dd x \\[3mm] = &\ {1 \over 4}\,\Re\oint_{\verts{z} = 1}{1 + \verts{a}\ln\pars{z} - z^{\verts{a}} \over 1 - \pars{z + z^{-1}}/2}\,{\dd z \over \ic z} = \half\,\Im\oint_{\verts{z} = 1} {z^{\verts{a}} - \verts{a}\ln\pars{z} - 1 \over \pars{z - 1}^{2}}\,\dd z \end{align}
Elegiremos el $z^{\verts{a}}$ y $\ln\pars{z}$ cortes de rama a lo largo del negativo $x$ -eje con $z = 0$ como su puntos de ramificación . Entonces, el contorno de integración es un ojo de la cerradura que no encierra ningún polo, de manera que toda la contribución a la integral proviene de las integrales por encima y por debajo de los cortes de rama. A saber, \begin{align} &\color{#f00}{\int_{0}^{\pi/2}{\sin^{2}\pars{ax} \over \sin^{2}\pars{x}}\,\dd x} \\[5mm] = &\ -\,\half\,\Im\int_{-1}^{0}{\pars{-x}^{\verts{a}}\exp\pars{\pi\verts{a}\ic} - \verts{a}\bracks{\ln\pars{-x} + \ic\pi} - 1 \over \pars{x - 1}^{2}}\,\dd x \\[3mm] & -\ \half\,\Im\int_{0}^{-1}{\pars{-x}^{\verts{a}}\exp\pars{-\pi\verts{a}\ic} - \verts{a}\bracks{\ln\pars{-x} - \ic\pi} - 1 \over \pars{x - 1}^{2}}\,\dd x \\[5mm] = &\ -\,\half\,\Im\int_{0}^{1}{x^{\verts{a}}\exp\pars{\pi\verts{a}\ic} - \verts{a}\bracks{\ln\pars{x} + \ic\pi} - 1 \over \pars{1 + x}^{2}}\,\dd x \\[3mm] & +\ \half\,\Im\int_{0}^{1}{x^{\verts{a}}\exp\pars{-\pi\verts{a}\ic} - \verts{a}\bracks{\ln\pars{x} - \ic\pi} - 1 \over \pars{1 + x}^{2}}\,\dd x \\[5mm] = &\ -\sin\pars{\pi\verts{a}}\int_{0}^{1}{x^{\verts{a}} \over \pars{1 + x}^{2}} \,\dd x + \pi\verts{a}\int_{0}^{1}{\dd x \over \pars{1 + x}^{2}} \\[3mm] & = \half\,\pi\verts{a} - \sin\pars{\pi\verts{a}}\int_{0}^{1}{x^{\verts{a}} \over \pars{1 + x}^{2}}\,\dd x \end{align}
Integrar por partes: \begin{align} &\color{#f00}{\int_{0}^{\pi/2}{\sin^{2}\pars{ax} \over \sin^{2}\pars{x}}\,\dd x} \\[3mm] = &\ \half\,\pi\verts{a} + \half\,\sin\pars{\pi\verts{a}} - \verts{a}\sin\pars{\pi\verts{a}}\int_{0}^{1}{x^{\verts{a} - 1} \over 1 + x} \,\dd x \\[3mm] = &\ \half\,\pi\verts{a} + \half\,\sin\pars{\pi\verts{a}} + \verts{a}\sin\pars{\pi\verts{a}}\int_{0}^{1}{1 - x^{\verts{a} - 1} \over 1 + x} \,\dd x - \verts{a}\sin\pars{\pi\verts{a}}\int_{0}^{1}{\dd x \over 1 + x} \\[3mm] = &\ \half\,\pi\verts{a} + \bracks{\half - \verts{a}\ln\pars{2}} \sin\pars{\pi\verts{a}} + a\sin\pars{\pi a}\color{#00f}{\int_{0}^{1}{1 - x^{\verts{a} - 1} \over 1 + x} \,\dd x}\tag{1} \end{align}
El " $\color{#00f}{blue\ integral}$ " se evalúa de la siguiente manera: \begin{align} &\color{#00f}{% \int_{0}^{1}{1 - x^{\verts{a} - 1} \over 1 + x}\,\dd x} = \int_{0}^{1}\pars{1 - x^{\verts{a} - 1}} \pars{{1 \over 1 + x} + {1 \over 1 - x}}\,\dd x - \int_{0}^{1}{1 - x^{\verts{a} - 1} \over 1 - x}\,\dd x \\[3mm] = &\ 2\int_{0}^{1}{1 - x^{\verts{a} - 1} \over 1 - x^{2}}\,\dd x - \int_{0}^{1}{1 - x^{\verts{a} - 1} \over 1 - x}\,\dd x = \int_{0}^{1}{x^{-1/2} - x^{\verts{a}/2 - 1} \over 1 - x}\,\dd x - \int_{0}^{1}{1 - x^{\verts{a} - 1} \over 1 - x}\,\dd x \\[3mm] & = \int_{0}^{1}{1 - x^{\verts{a}/2 - 1} \over 1 - x}\,\dd x - \int_{0}^{1}{1 - x^{-1/2} \over 1 - x}\,\dd x - \int_{0}^{1}{1 - x^{\verts{a} - 1} \over 1 - x}\,\dd x \\[3mm] = &\ \bracks{\Psi\pars{{\verts{a} \over 2}} + \gamma}\ -\ \overbrace{\bracks{\Psi\pars{\half} + \gamma}}^{\ds{-2\ln\pars{2}}}\ -\ \bracks{\Psi\pars{\verts{a}} + \gamma} \\[3mm] = &\ \color{#00f}{% 2\ln\pars{2} + \bracks{\Psi\pars{{\verts{a} \over 2}} - \Psi\pars{\verts{a}}}} \end{align}
En la sustitución de este resultado en $\pars{1}$ encontramos: \begin{align} &\color{#f00}{\int_{0}^{\pi/2}{\sin^{2}\pars{ax} \over \sin^{2}\pars{x}}\,\dd x} \\[3mm] = &\ \color{#f00}{\half\,\pi\verts{a} + \bracks{\verts{a}\ln\pars{2} + \half}\sin\pars{\pi\verts{a}} + a\sin\pars{\pi a} \bracks{\Psi\pars{{\verts{a} \over 2}} - \Psi\pars{\verts{a}}}} \end{align}
1 votos
¿Podría enlazar la sala de chat donde existe una discusión relacionada?
1 votos
@choco_addicted comprobar alrededor de los mensajes aquí :)