$\newcommand{\+}{^{\daga}}
\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}
\newcommand{\cy}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{\int_{0}^{\pi/4}{\sin\pars{x} \over x\cos^{2}\pars{x}}\,\dd x:\ {\large ?}}$
\begin{align}
&\color{#00f}{\large%
\int_{0}^{\pi/4}{\sin\pars{x} \over x\cos^{2}\pars{x}}\,\dd x}=
\int_{0}^{\pi/4}{\sec\pars{x}\tan\pars{x} \over x}\,\dd x
=\int_{x=0}^{x=\pi/4}\,{\dd\bracks{\sec\pars{x} -1}\over x}
\\[3mm]&={4 \over \pi}\,\pars{\root{2} - 1}
+\int_{0}^{\pi/4}{\sec\pars{x} -1 \over x^{2}}\,\dd x
\\[3mm]&={4 \over \pi}\,\pars{\root{2} - 1}
+\sum_{n = 1}^{\infty}\pars{-1}^{n}{E_{2n} \over \pars{2n}!}
\int_{0}^{\pi/4}x^{2n - 2}\,\dd x
\\[3mm]&=\color{#00f}{\large{4 \over \pi}\,\pars{\root{2} - 1}
+\sum_{n = 1}^{\infty}\pars{-1}^{n}{E_{2n} \over \pars{2n}!\pars{2n - 1}}
\pars{\pi \over 4}^{2n - 1}}
\end{align}
donde $\ds{E_{n}}$ es un Número de Euler.