Calcular $$\lim _{n\rightarrow +\infty} \sum _{k=0}^{n} \frac{\sqrt{2n^2+kn-k^2}}{n^2}$ $
Mi intento: $$\lim _{n\rightarrow +\infty} \sum _{k=0}^{n} \frac{\sqrt{2n^2+kn-k^2}}{n^2}=\lim _{n\rightarrow +\infty} \frac{1}{n} \sum _{k=0}^{n} \sqrt{2+\frac{k}{n}-(\frac{k}{n})^2}=\lim _{n\rightarrow +\infty} \frac{1}{n} \sum _{k=0}^{n} f(\frac{k}{n})=\int^{1}_{0} \sqrt{2+x-x^2} dx=\int^{1}_{0} \sqrt{-(x-\frac{1}{2})^2+\frac{9}{4}} dx=\int^{\frac{1}{2}}_{-\frac{1}{2}} \sqrt{\frac{9}{4}-u^2} du$ $ En esta solución: $$f:[0,1]\rightarrow \mathbb R, f(x)=\sqrt{2+x-x^2}$ $ $$u=x-\frac{1}{2}, du=dx$$Unfortunatelly I don't know what I can do with $ \ int ^ {\ frac {1} {2}} _ {- \ frac {1} {2}} \ sqrt {\ frac {9} {4} -u ^ 2} du$ because my only idea is integration by substitution. But if I use for example $ s = u ^ 2$ then I have $ ds = 2udu$ so $ du = \ frac {ds } {2u}$ so I did not get rid of $ u $ lo cual es problemático.
¿Puedes ayudarme a evitar este problema?