Otro problema de quora.
¿Qué se puede decir acerca de $v =\prod_{s=2}^{\infty} \zeta(s) $?
Wolfy dice que $v \aprox 2.294856591673313794183 $.
La Inversa De La Calculadora Simbólica (http://wayback.cecm.sfu.ca/projects/ISC/ISCmain.html) no encuentra nada.
Aquí están los valores cercanos:
$2294856391585950 = (0064) suma((7/6*n^3-3*n^2+65/6*n-3)/(Fibo(n)+1),n=1..inf)\\ 2294856397653578 = (0001) GAM(5/6)*BesI(1,2)^{GAM(7/12)}\\ 2294856469349552 = (0006) 1/4357571\\ 2294856473388934 = (0324) 1/10*(10+14^{1/2}*10^{1/4})^{1/2}*10^{3/4}\\ 2294856488490537 = (0001) BesJ(0,1)^{GAM(1/3)/GAM(5/12)}\\ 2294856524215021 = (0314) sin(Pi*8/45)-sin(Pi*14/51)\\ 2294856591673313 \text{ aquí}\\ 2294856740350177 = (0011) suma((2*n^3-5*n^2+22*n-14)/(n!+2),n=1..inf)\\ 2294856991319600 = (0324) 23^{1/2}/(12^{3/4}-3^{2/3})^{1/2}\\ 2294857017919943 = (0001) Feig2*Li4(1/2)/GAM(5/6)\\ 2294857089879260 = (0248) F(11/26;27/50;1) \\ 2294857493303450 = (0404) Psi(1/21)+Psi(19/21)+Psi(13/14)\\ $
He intentado utilizar Euler zeta del producto y de la partición de la suma, pero esto no parece ayudar. Aquí es lo que resultó:
$\zeta(s) =\dfrac1{\prod_p (1-p^{s})} $.
$\begin{array}\\ v &=\prod_{s=2}^{\infty} \zeta(s)\\ &=\prod_{s=2}^{\infty} \dfrac1{\prod_p (1-p^{-s})}\\ &=\prod_{s=2}^{\infty} \prod_p\dfrac1{ (1-p^{-s})}\\ &= \prod_p\prod_{s=2}^{\infty}\dfrac1{ (1-p^{-s})}\\ \end{array} $
De Euler de la identidad del producto los estados que $\prod_{n=1}^{\infty}\dfrac1{1-zx^n} =\sum_{n=1}^{\infty} \dfrac{x^nz^n}{\prod_{k=1}^n(1-x^k)} $. Poner $x=z=\dfrac1{p} $, $\prod_{n=2}^{\infty}\dfrac1{1-p^{-n}} =\sum_{n=1}^{\infty} \dfrac{p^{-2n}}{\prod_{k=1}^n(1-p^{-k})} $.
Que tan lejos como puedo ir.