Puede este límite se encuentran sin utilizar la regla de L'Hôpital o Taylor/la serie de Maclaurin?-- $$L=\displaystyle\lim_{x \rightarrow 0} \dfrac{e^x-x-1}{x^2}$$
Llegué a la respuesta correcta..solo que el método no es infalible.
--
Deje $L$ ser el límite. Así,
$$L=\lim_{x \rightarrow 0}\dfrac{e^x-x-1}{x^2}$$ Now, let $x=2y$. So, $$L=\lim_{x \rightarrow 0} \dfrac{e^{2y}-2y-1}{4y^2}$$So, the limit can be rewritten as $$L=\lim_{y \rightarrow 0} \dfrac{e^{2y}-2e^y+1+2e^y-2y-2}{4y^2}$$ which is $$L=\dfrac{1}{4}\lim_{y \rightarrow 0} \left(\left(\dfrac{e^y-1}{y}\right)^2+2\dfrac{e^y-y-1}{y^2}\right)$$ Now comes what i was saying. What i did was i separated the limit across the two terms. We can do that only if the two limits exist individually and finitely. The first, i am sure, exists.But notice the second term is twice the limit we desire to find. So, this method is only applicable when the limit exists.If we do substitute the second term with 2L, we have $$L=\dfrac{1}{4} (1+2L)=L$$ Solving for $L$ we get $\boxed{L=\dfrac{1}{2}}$.
Pero como ya he dicho este método no es infalible. Es que hay alguna?