$\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\dsc}[1]{\displaystyle{\color{red}{#1}}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,{\rm Li}_{#1}}
\newcommand{\norm}[1]{\left\vert\left\vert\, nº 1\,\right\vert\right\vert}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$
Tenga en cuenta que $\ds{\,{\rm p}\pars{y}}$ puede ser escrito como
$\ds{\,{\rm p}\pars{y} = -\,\partiald{}{y_{1}}{1 \over \norm{y}}}$
A continuación,
\begin{align}&\color{#66f}{\large%
\int_{{\mathbb R}^{3}}\,{\rm G}\pars{x - y}\nabla\,{\rm p}\pars{y}\,\dd y}
=-\int_{{\mathbb R}^{3}}\,{\rm p}\pars{y}\nabla\,{\rm G}\pars{x - y}\,\dd y
\\[5mm]&=\int_{{\mathbb R}^{3}}\,{\rm p}\pars{y}\nabla_{x}
\,{\rm G}\pars{x - y}\,\dd y
=\nabla_{x}\int_{{\mathbb R}^{3}}\,{\rm p}\pars{y}\,{\rm G}\pars{x - y}\,\dd y
\\[5mm]&=-\nabla_{x}\bracks{\int_{{\mathbb R}^{3}}\,{\rm G}\pars{x - y}
\pars{\partiald{}{y_{1}}{1 \over \norm{y}}}\,\dd y}
=\nabla_{x}\bracks{\int_{{\mathbb R}^{3}}{1 \over \norm{y}}\,
\partiald{\,{\rm G}\pars{x - y}}{y_{1}}\,\dd y}
\\[5mm]&=-\nabla_{x}\bracks{\int_{{\mathbb R}^{3}}{1 \over \norm{y}}\,
\partiald{\,{\rm G}\pars{x - y}}{x_{1}}\,\dd y}
\end{align}
$$
\color{#66f}{\large%
\int_{{\mathbb R}^{3}}\,{\rm G}\pars{x - y}\nabla\,{\rm p}\pars{y}\,\dd y}
=-\lim_{d\ \para\ \infty}\nabla_{x}\partiald{}{x_{1}}\bracks{%
\int_{{\mathbb R}^{3} \cima \norma de{y}\ <\ d\ >\ \norma{x}}{\,{\rm G}\pars{x - y} \over \norma de{y}}\,\dd y}
$$
\begin{align}&\color{#66f}{\large%
\int_{{\mathbb R}^{3}}\,{\rm G}\pars{x - y}\nabla\,{\rm p}\pars{y}\,\dd y}
\\[5mm]&=\!\!-\!\!\lim_{d\ \to\ \infty}\!\!\nabla_{x} \partiald{}{x_{1}}\bracks{%
\int_{0}^{\norm{x}}{1 \over \norm{y}}\,{1 \over
\norm{x}}\,4\pi\norm{y}^{2}\,\dd\norm{y}
+\int_{\norm{x}}^{d}{1 \over \norm{y}}\,
{1 \over \norm{y}}\,4\pi\norm{y}^{2}\,\dd\norm{y}}
\\[5mm]&=-4\pi\lim_{d\ \to\ \infty}\nabla_{x}\partiald{}{x_{1}}\bracks{%
\half\,\norm{x} + d - \norm{x}}
=2\pi\,\nabla_{x}\partiald{\norm{x}}{x_{1}}
=2\pi\,\nabla_{x}{x_{1} \over \norm{x}}
\\[5mm]&=2\pi\pars{%
{\nabla_{x}x_{1} \over \norm{x}} + x_{1}\nabla_{x}{1 \over \norm{x}}}
=2\pi\bracks{{\hat{x}_{1} \over \norm{x}} + x_{1}\pars{-\,{1 \over \norm{x}^{2}}
\,{x \over \norm{x}}}}
=2\pi\,{\norm{x}^{2}\,\hat{x}_{1} - x_{1}x \over \norm{x}^{3}}
\end{align}
$$
\color{#66f}{\large%
\int_{{\mathbb R}^{3}}\,{\rm G}\pars{x - y}\nabla\,{\rm p}\pars{y}\,\dd y}
=\color{#66f}{\large%
2\pi\,{x_{\asesino}^{2}\,\hat{x}_{1} - x_{1}x_{\asesino} \over \norma{x}^{3}}}\,,\qquad
x_{\asesino} \equiv x_{2}\,\hat{x}_{2} + x_{3}\,\hat{x}_{3}
$$