Por inducción. El número de miembros del álgebra Booleana en un conjunto con $0$ miembros $1=2^0.$ Supongamos que la proposición es verdadera para los conjuntos de la mayoría de las $n$ de los miembros.Deje $S$ ha $n+1$ miembros y deje $B$ ser un álgebra Booleana en $S.$ Elegir $x\in S.$ $$\text {Let } C=\{b\in B : x\not \in B\}.\quad \text {Let } S^*=\cup C.$$ Since $B$ is finite, we have $S^*\en B.$and so $S^*\en C$. Now $C$ is a Boolean algebra on $S^*.$ (For complements in $S^*,$ if $b\in C,$ then $p\no \S^*\barra invertida b=S^*\cap (S\ \ barra invertida b)\in B,$ so $S^*\barra invertida b\in C.)$ Since $S^*$ has at most $n$ members, the number of members of $C$ is $2^k$ for some positive integer $k.$ $$\text {Now let } D= \{b\in B :p\in B\} \quad \text {and } e=\cap D.$$ Since $B$ is finite, we have $e\B$, and $e\en D.$ $$\text { We have } e\cap S^*=e\cap (\cup C)=\phi$$ $$\text { because } b\in C\to S\backslash b\in D\to b\cap e\subset b\cap (S\backslash b)=\phi.$$ Finally, consider the families $$T= \{b\cup e :b\in C\}\quad\text { and } U=C\cup T .$$ $$\text {We assert that } U \text { has } 2^{k+1} \text { members and that } U=B.$$ First, if $b_1,b_2 \en C$ then $$(b_1\cap e=\phi=b_2\cap e) \to [\;(b_1\cup e =b_2\cup e)\to b_1=b_2\;].$$ Therefore $T$ has the same number of members that $C$ does, which is $2^k.$ And $T\cap C=\phi$ because $p$ belongs to every member of $T$ and to no member of $C.$ So the number of members of $U$ is $$2^k+2^k=2^{k+1}.$$ Second, we have $U\subconjunto B,$ but for any $b\in B$ we have $$(1): p\not \in b\to b\in C\to b\in U.$$ $$(2): p\in b\to b\supset e$$ (by the def'n of $e$); and $b\barra invertida e\en C$ (because $p\e\S$), so $$(p\in b)\to b=(b\backslash e )\cup (b\cap e)=(b\backslash e) \cup e \in U.$$ therefore $B\subconjunto U$. We have $B\subconjunto de U \subconjunto B$, so $U=B$.