$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\dsc}[1]{\displaystyle{\color{red}{#1}}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\Li}[1]{\,{\rm Li}_{#1}} \newcommand{\norm}[1]{\left\vert\left\vert\, #1\,\right\vert\right\vert} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$ Con $\ds{\quad x \equiv \expo{-t}\ \imp\ t = -\ln\pars{x}}$ :
\begin{align} \int_{0}^{1}{\dd x \over \ln\pars{x}\ln\pars{1 - x}}&= \int_{\infty}^{0}{-\expo{-t}\,\dd t \over -t\ln\pars{1 - \expo{-t}}} =-\int_{0}^{\infty}{\expo{-t} \over t\ln\pars{1 - \expo{-t}}}\,\dd t \end{align}
En $\ds{t\ \ggg 0}$ el integrando se comporta como $\ds{1 \over t}$ tal que la integral diverge ' $\tt logarithmically$ ' en el límite superior.
En $\ds{t\ \gtrsim 0}$ el integrando se comporta como $\ds{-\,{1 \over t\ln\pars{t}}}$ tal que la integral diverge como $\ds{\ln\pars{-\ln\pars{t}}}$ en el $\tt\mbox{lower limit}$ .
Además, esas divergencias $\tt\mbox{don't cancel each other}$ tal que la integral original $\sf diverges{\rm\mbox{ !!!}}$ .