$$f = \frac{10x^2+12x+4}{(x+2)(x^2 +1)}=\frac{4}{x+2}+\frac{6x}{x^2+1}=\frac{2}{1-\left(-\frac x 2 \right)}+\frac{6x}{1-(-x^2)}$$
Así que terminamos con $$2 \sum_{n=0}^{15} \left(-\frac x 2 \right)^n + 6x \sum_{n=0}^{15} (-x^2)^n$$ but because we are looking for $f^{(15)}(0)$ we get the result of $2$?