Si $1,A_1,A_2,A_3....A_{n-1}$ son $n^{th}$ raíces de la unidad, a continuación, probar que $$\dfrac{1}{2-A_1} + \dfrac{1}{2-A_2}+\cdots+ \dfrac{1}{2-A_{n-1}} = \dfrac{2^{n-1}(n-2) + 1}{2^n-1}$$
Lo que yo hice: he intentado utilizar algunos de los siguientes fórmulas: $$1+ A_1 +A_2+A_3+\cdots+A_{n-1} = 0$$
$$\dfrac{2^n - 1}{2-1} = (2 -A_1)(2-A_2)\cdots(2-A_{n-1})$$
y el hecho de que $|A_i| = 1$ para $i =1,2,3,\cdots,n-1$.