Deje $r \in [0,1)$ e $\theta \in [-\pi,\pi]$ y definir, $$P_r(\theta) = \frac{1-r^2}{2\pi(1+r^2-2r\cos(\theta))} = \frac{1}{2\pi}\sum_{n=-\infty}^{\infty}r^{|n|}e^{in\theta}.$$ A continuación quiero mostrar que la $\Delta P_r(\theta) = 0.$ Debo acaba de utilizar el hecho de que, $$\Delta f = {\frac {1}{r}}{\frac {\partial }{\partial r}}\left(r{\frac {\partial f}{\partial r}}\right)+{\frac {1}{r^{2}}}{\frac {\partial ^{2}f}{\partial \theta ^{2}}}\\= {\frac {\partial ^{2}f}{\partial r^{2}}}+{\frac {1}{r}}{\frac {\partial f}{\partial r}}+{\frac {1}{r^{2}}}{\frac {\partial ^{2}f}{\partial \theta ^{2}}}$$
y acaba de calcular las correspondientes derivadas parciales usando la expresión analítica de $P_r(\theta)$ como sigue:
$$\frac{\partial^2}{\partial^2 r}\left(\frac{1-r^2}{2\pi \left(1+r^2-2r\cos \left(\theta \right)\right)}\right)+\frac{1}{r}\cdot \frac{\partial}{\partial r}\left(\frac{1-r^2}{2\pi \left(1+r^2-2r\cos \left(\theta \right)\right)}\right)\\+ \frac{1}{r^2}\cdot \frac{\partial^2}{\partial^2 \theta }\left(\frac{1-r^2}{2\pi \left(1+r^2-2r\cos \left(\theta \right)\right)}\right) \\=\frac{4\left(\cos ^2\left(θ\right)+\sin ^2\left(θ\right)-r^2\cos ^2\left(θ\right)-r^2\sin ^2\left(θ\right)+r^2-1\right)}{\pi \left(r^2-2r\cos \left(θ\right)+1\right)^3}\\=0?$$
También, debería considerar el caso de $r=0$ por separado?