$\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\iff}{\Leftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\, #2 \,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$
\begin{align}
\color{#f00}{I} & =
{1 \over 4}\int_{0}^{\pi/2}
{\cos\pars{2x} - \cos\pars{6x} + 1 -\cos\pars{4x} \over x}\,\dd x
\\[3mm] & =
{1 \over 4}\int_{0}^{\pi/2}{\cos\pars{2x} - 1 \over x}\,\dd x -
{1 \over 4}\int_{0}^{\pi/2}{\cos\pars{6x} - 1 \over x}\,\dd x -
{1 \over 4}\int_{0}^{\pi/2}{\cos\pars{4x} - 1 \over x}\,\dd x
\\[3mm] & =
{1 \over 4}\int_{0}^{\pi}{\cos\pars{x} - 1 \over x}\,\dd x -
{1 \over 4}\int_{0}^{3\pi}{\cos\pars{x} - 1 \over x}\,\dd x -
{1 \over 4}\int_{0}^{2\pi}{\cos\pars{x} - 1 \over x}\,\dd x
\\[3mm] & =
{1 \over 4}\braces{\vphantom{\Large A}%
\bracks{\vphantom{\large A}\mathrm{Ci}\pars{\pi} - \ln\pars{\pi} - \gamma} -
\bracks{\vphantom{\large A}\mathrm{Ci}\pars{3\pi} - \ln\pars{3\pi} - \gamma} -
\bracks{\vphantom{\large A}\mathrm{Ci}\pars{2\pi} - \ln\pars{2\pi} - \gamma}}
\\[3mm] & =
\color{#f00}{{1 \over 4}\bracks{%
\mathrm{Ci}\pars{\pi} - \mathrm{Ci}\pars{3\pi} - \mathrm{Ci}\pars{2\pi}
+ \ln\pars{6\pi} + \gamma}} \approx 0.8998
\end{align}
$\mathrm{Ci}$ es el Coseno la función Integral e $\gamma$ es el de Euler-Mascheroni constante.