Para $n\in\Bbb N_0$, evaluar en forma cerrada $$T_n=\int_{0}^{\pi/2}x^{n}\ln(1+\tan x)\,dx$$
Después de ver la respuesta de @mrtaurho a esta pregunta, me di cuenta de que sería posible generalizar su método y calcular muchas integrales en la forma $$\int_0^{\pi/2}P(x)\ln(1+\tan x)\,dx$$ donde $P$ es un polinomio en $x$. Esto sería posible una vez que se descompusiera la integral en muchas piezas pequeñas, muchas de las cuales estarían en las formas $$\int_{\pi/4}^{3\pi/4}x^n\ln\sin x\,dx$$ o $$\int_0^{\pi/2}x^n\ln\cos x\,dx$$ u otras integrales similares. Supuse que tales generalizaciones serían bastante 'fáciles' una vez que se identificara el patrón general. Mis intentos están debajo.
Para empezar, vemos que $$\begin{align} T_n&=\int_0^{\pi/2}x^n\ln(\sin x+\cos x)\,dx-\int_0^{\pi/2}x^n\ln\cos x\,dx\\ &=\int_0^{\pi/2}x^n\ln\left(\sqrt{2}\sin\left(x+\frac{\pi}4\right)\right)\,dx-\int_0^{\pi/2}x^n\ln\cos x\,dx\\ &=\int_0^{\pi/2}x^n\ln\left(\sqrt{2}\sin\left(x+\frac{\pi}4\right)\right)\,dx-\int_0^{\pi/2}x^n\ln\cos x\,dx\\ &=\frac12\left(\frac\pi2\right)^{n+1}\frac{\ln2}{n+1}+\int_0^{\pi/2}x^n\ln\sin\left(x+\frac{\pi}4\right)\,dx-\int_0^{\pi/2}x^n\ln\cos x\,dx\\ &=\frac12\left(\frac\pi2\right)^{n+1}\frac{\ln2}{n+1}-\int_0^{\pi/2}x^n\ln\cos x\,dx+\sum_{k=0}^{n}(-1)^{n-k}{n\choose k}\left(\frac\pi4\right)^{n-k}\int_{\pi/4}^{3\pi/4}x^k\ln\sin x\,dx\\ &=\frac12\left(\frac\pi2\right)^{n+1}\frac{\ln2}{n+1}-c_n+\sum_{k=0}^{n}(-1)^{n-k}{n\choose k}\left(\frac\pi4\right)^{n-k}s_k \end{align}$$ A partir de este punto, haremos un uso intensivo de las funciones de Clausen $\mathrm{Cl}_s(z)$.
Para evaluar $s_n$, necesitaremos tener en cuenta que $\int\ln\sin x\,dx=-\frac12\mathrm{Cl}_2(2x)-x\ln2$. Con esto en mente, integramos por partes: $$\begin{align} s_n&=-x^n\left(\frac12\mathrm{Cl}_2(2x)+x\ln2\right)\bigg|_{\pi/4}^{3\pi/4}+n\int_{\pi/4}^{3\pi/4}x^{n-1}\left(\frac12\mathrm{Cl}_2(2x)+x\ln2\right)dx\\ &=\frac12\left(\frac\pi4\right)^n\left[(3^n+1)\mathrm G+\frac{1-3^n}{2}\pi\ln2\right]+n\int_{\pi/4}^{3\pi/4}x^{n-1}\left(\frac12\mathrm{Cl}_2(2x)+x\ln2\right)dx\\ &=\frac12\left(\frac\pi4\right)^n\left[(3^n+1)\mathrm G+\frac{1+3^n(2n-1)}{n+1}\frac\pi2\ln2\right]+\frac{n}2\int_{\pi/4}^{3\pi/4}x^{n-1}\mathrm{Cl}_2(2x)dx\\ &=\alpha_n+\frac{n}{2^{n+1}}\int_{\pi/2}^{3\pi/2}x^{n-1}\mathrm{Cl}_2(x)dx\tag{1} \end{align}$$ Donde $\mathrm G$ es la constante de Catalán. Sé que la integral restante se puede abordar a través de integraciones repetidas por partes: $$\begin{align} \int_{\pi/2}^{3\pi/2}x^{n-1}\mathrm{Cl}_2(x)dx&=-x^{n-1}\mathrm{Cl}_3(x)\bigg|_{\pi/2}^{3\pi/2}+(n-1)\int_{\pi/2}^{3\pi/2}x^{n-2}\mathrm{Cl}_3(x)dx\\ f_{n-1}&=\frac{3}{32}\left(\frac\pi2\right)^{n-1}(3^{n-1}-1)\zeta(3)+(n-1)f_{n-2} \end{align}$$ Donde $$f_m=\int_{\pi/2}^{3\pi/2}x^{m}\mathrm{Cl}_{n-m+1}(x)dx$$ De todos modos, hemos encontrado a través de la integración por partes que $$f_j=\underbrace{(-1)^{n-j}\left(\frac\pi2\right)^{n-j}\left[3^j\mathrm{Cl}_{n-j+2}\left(\frac{3\pi}{2}\right)-\mathrm{Cl}_{n-j+2}\left(\frac{\pi}{2}\right)\right]}_{u_j}+\underbrace{(-1)^{n-j+1}j}_{v_j}f_{j-1}$$ Y de aquí, tenemos $$f_j=f_0\prod_{k=1}^{j}v_k+\sum_{k=0}^{j-1}u_{j-k}\prod_{\ell=1}^{k}v_{j-\ell+1}$$ Que es $$f_j=(-1)^{\frac{j}2(2n-j+1)}j!f_0+n!\sum_{k=0}^{j-1}(-1)^{\frac{k(k+1)}2}\frac{u_{j-k}}{(n-k)!}$$ Entonces $$f_{n-1}=(-1)^{\frac{(n-1)(n+2)}2}(n-1)!f_0+n!\sum_{k=0}^{n-2}(-1)^{\frac{k(k+1)}2}\frac{u_{n-k-1}}{(n-k-1)!}\tag{2}$$ Sustituyendo $(2)$ en $(1)$ da $s_n$. En cuanto a las formas cerradas, podemos evaluar las expresiones de $\mathrm{Cl}$ en $u_j$ al notar que $$\mathrm{Cl}_{2n}\left(\frac{3\pi}{2}\right)=-\mathrm{Cl}_{2n}\left(\frac{\pi}{2}\right)=-\beta(2n)$$ y $$\mathrm{Cl}_{2n+1}\left(\frac{3\pi}{2}\right)=\mathrm{Cl}_{2n+1}\left(\frac{\pi}{2}\right)=\frac{1-2^{2n}}{2^{4n+1}}\zeta(2n+1)$$ Donde $$\beta(s)=\sum_{k\geq0}\frac{(-1)^k}{(2k+1)^s}$$ es la función beta de Dirichlet.
En cuanto a $c_n$, el proceso probablemente sería similar pero mucho más desagradable, lo que plantea mi pregunta:
¿Hay una manera más eficiente/diferente de evaluar $T_n$? Se aceptan respuestas que incluyan funciones especiales (incluidas las funciones hipergeométricas).
Editar: Confirmar mis sospechas anteriores, encontramos (a través de la integración por partes) que $$c_n=-\left(\frac\pi2\right)^{n+1}\frac{\ln2}{n+1}+\frac{n}{2^n}\sum_{k=0}^{n-1}(-1)^{n-k-1}{n-1\choose k}\pi^{n-k-1}g_k$$ Donde $$g_k=\int_{\pi}^{2\pi}x^{k}\mathrm{Cl}_2(x)dx$$ Entonces, a través de la integración por partes nuevamente, $$g_k=\left(\frac34-2^k\right)\pi^k\zeta(3)+kd_{k-1}$$ donde $$d_j=\int_\pi^{2\pi} x^j\mathrm{Cl}_{k-j+2}(x)dx$$ La integración por partes nuevamente proporciona la recurrencia (resoluble) $$d_j=(-1)^{k-j+1}x^j\mathrm{Cl}_{k-j+3}(x)\bigg|_\pi^{2\pi}+(-1)^{k-j}jd_{j-1}$$ Entonces, de hecho, hemos encontrado una suma finita horrenda para $T_n$. En cuanto a las formas cerradas, notamos que $$\mathrm{Cl}_{2m}(a\pi)=0\qquad a,m\in\Bbb Z, m\geq1$$ Y $$\mathrm{Cl}_{2m+1}(2a\pi)=\zeta(2m+1)$$ $$\mathrm{Cl}_{2m+1}((2a+1)\pi)=(1-2^{-2m})\zeta(2m+1)$$ Así que después de todo, $$\begin{align} T_n&=\frac32\left(\frac\pi2\right)^{n+1}\frac{\ln2}{n+1}+\frac{n}{2^n}\sum_{k=0}^{n-1}(-1)^{n-k}{n-1\choose k}\pi^{n-k-1}\left[\left(\frac34-2^k\right)\pi^k\zeta(3)+kd_{k-1}\right]\\ &+\sum_{k=0}^{n}(-1)^{n-k}{n\choose k}\left(\frac\pi4\right)^{n-k}\left[\alpha_k+\frac{k}{2^{k+1}}f_{k-1}\right] \end{align}$$ Que es la integral más desagradable que he visto. Veré si esta suma confirma los resultados conocidos.
1 votos
Y pensé que era un lío evaluar el caso $n=2`...
^^
2 votos
Bueno, es un lío organizable
0 votos
Una respuesta breve - también para tu pregunta - está aquí. ;)