La función
$$f\left(z\right)=\frac{z^6}{\left(z^4+a^4\right)^2}$$
Tiene los siguientes polos de orden 2:
$$ z(k)=a \exp\left( \frac{\left(2k+1\right)}4 i\pi \right)$$
$f$ es aún, por lo tanto: $$\int _0^{+\infty }\frac{x^6}{\left(x^4+a^4\right)^2}dx =\frac{1}{2}\int _{-\infty }^{+\infty \:}\frac{x^6}{\left(x^4+a^4\right)^2}dx$$
$$\int _0^{+\infty }\frac{x^6}{\left(x^4+a^4\right)^2}dx=i\pi \sum _k\:Res\left(f,\:z\left(k\right)\right)$$
$$Res\left(f,\:z\left(k\right)\right)=\lim _{z\to z\left(k\right)}\left(\frac{1}{\left(2-1\right)!}\left(\frac{d}{dz}\right)^{2-1}\frac{z^6\left(z-z\left(k\right)\right)^2}{\left(z^4+a^4\right)^2}\right)$$
$$z^4+a^4=z^4-z_k^4\implies\dfrac{z^6(z-z_k)^2}{(z^4+a^4)^2}=\dfrac{z^6}{(z^3+z_k z^2+z_k^2 z+z_k^3)^2}$$
$$Res\left(f,\:z_k\right)=\lim _{z\to \:z_k}\left(\frac{d}{dz}\left(\frac{z^6}{\left(z^3+z_kz^2+z_k^2z+z_k^3\right)^2}\right)\right)$$
$$Res\left(f,\:z_k\right)=\frac{2z_kz^5\left(z^2+2z_kz+3z_k^2\right)}{\left(z^3+z_kz^2+z_k^2z+z_k^3\right)^3}=\frac{2z_k^6\cdot 6z_k^2}{\left(4z_k^3\right)^3}$$
$$Res\left(f,\:z_k\right)=\frac{12z_k^8}{64z_k^9}=\frac{3}{16z_k}$$
$$\int _0^{+\infty }\frac{x^6}{\left(x^4+a^4\right)^2}dx=\frac{3i\pi }{16a}\sum _{k=0}^n\:e^{-\frac{\left(2k+1\right)}{4}i\pi }$$
Sólo tenemos en cuenta los residuos dentro de la mitad superior del plano, es decir, los correspondientes a $k=0$ e $k=1$.
$$\int _0^{+\infty \:}\frac{x^6}{\left(x^4+a^4\right)^2}dx=\frac{3i\pi \:}{16a}\left(e^{-\frac{i\pi }{4}\:\:}+e^{-\frac{3i\pi \:}{4}\:\:}\right)$$
$$\int _0^{+\infty \:}\frac{x^6}{\left(x^4+a^4\right)^2}dx=\frac{3i\pi \:}{16a}\left(\frac{\sqrt{2}}{2}\:-i\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}-i\frac{\sqrt{2}}{2}\right)$$
$$\int _0^{+\infty \:}\frac{x^6}{\left(x^4+a^4\right)^2}dx=\frac{3\pi \sqrt{2}\:}{16a}$$