Solución
La expansión de $(1+x)^{\frac{1}{x}}$ a $x=0$ por la Fórmula de Taylor,obtenemos \begin{align*} (1+x)^{\frac{1}{x}}&=\exp\left[\frac{\ln(1+x)}{x}\right]=\exp \left(\frac{x-\frac{x^2}{2}+\frac{x^3}{3}+\cdots }{x}\right)\\ &=\exp \left(1-\frac{x}{2}+\frac{x^2}{3}+\cdots \right)=e\cdot\exp \left(-\frac{x}{2}+\frac{x^2}{3}+\cdots \right) \\ &=e\left[1+\left(-\dfrac{x}{2}+\dfrac{x^2}{3}+\cdots \right)+\frac{1}{2!}\left(-\dfrac{x}{2}+\dfrac{x^2}{3}+\cdots \right)^2+\cdots\right]\\ &=e\left(1-\frac{x}{2}+\frac{11}{24}x^2+\cdots\right)\\ &=e-\frac{ex}{2}+\frac{11}{24}ex^2+\cdots \end{align*}
Asimismo, la expansión de $e^{(1+x)^{\frac{1}{x}}}$ a $x=0$, obtenemos \begin{align*} e^{(1+x)^{\frac{1}{x}}}&=(e^e)^{1-\frac{x}{2}+\frac{11}{24}x^2-\cdots}=e^e\cdot (e^e)^{-\frac{x}{2}+\frac{11}{24}x^2+\cdots}\\ &=e^e\cdot\left[1+\left(-\frac{x}{2}+\frac{11}{24}x^2+\cdots\right)\ln e^e+\frac{1}{2!}\left(-\frac{x}{2}+\frac{11}{24}x^2+\cdots\right)^2\ln^2 e^e+\cdots\right]\\ &=e^e \cdot\left[1-\frac{ex}{2}+\frac{1}{24}(11e+3e^2)x^2+\cdots\right] \end{align*}
La expansión de $(1+x)^{\frac{e}{x}}$ a $x=0$, se deduce que \begin{align*} (1+x)^{\frac{e}{x}}&=\exp\left[\frac{e\ln(1+x)}{x}\right]=\exp \left(e\cdot\frac{x-\frac{x^2}{2}+\frac{x^3}{3}+\cdots }{x}\right)\\ &=\exp \left(e-\frac{ex}{2}+\frac{ex^2}{3}+\cdots \right)=e^e\cdot\exp \left(-\frac{ex}{2}+\frac{ex^2}{3}+\cdots \right) \\ &=e^e\left[1+\left(-\frac{ex}{2}+\frac{ex^2}{3}+\cdots \right)+\frac{1}{2!}\left(-\frac{ex}{2}+\frac{ex^2}{3}+\cdots \right)^2+\cdots\right]\\ &=e^e\left[1-\frac{ex}{2}+\frac{1}{24}e(8+3e)x^2+\cdots\right] \end{align*} Por lo tanto \begin{align*} &\lim_{x \to 0}\frac{e^{(1+x)^{\frac{1}{x}}}-(1+x)^{\frac{e}{x}}}{x^2}\\ =&\lim_{x \to 0}\frac{e^e\cdot\left[1-\dfrac{ex}{2}+\dfrac{1}{24}e(11+3e)x^2+\cdots\right]-e^e\cdot\left[1-\dfrac{ex}{2}+\dfrac{1}{24}e(8+3e)x^2+\cdots\right]}{x^2}\\ =&e^e\cdot\frac{1}{8}e\\ =&\frac{1}{8}e^{e+1} \end{align*}
Por favor consulte. Hay más solución más sencilla?